首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 67 毫秒
1.
Design of hollow nanostructure and controllable phase of mixed metal oxides for improving performance in supercapacitor applications is highly desirable. Here we demonstrate the rational design and synthesis of Mn3−xFexO4 hollow nanostructures for supercapacitor applications. Owing to high porosity and the specific surface area that provides more active sites for electrochemical reactions, the electrochemical performance of Mn3−xFexO4 hollow nanostructure substantially enhanced comparing with pristine Mn3O4. Particularly, in 1.0 M KOH electrolyte, Mn0.16Fe2.84O4 with a typical diameter of 20 nm exhibits excellent specific capacitance of 2675, 2320, 1662, 987 F g−1 at current densities of 1, 2, 5, 10 A g−1, respectively, which is significantly superior to those of other transition metal oxides. Besides, an asymmetric supercapacitor is assembled by using Mn0.16Fe2.84O4 and activated carbon as a positive and a negative electrode, respectively. Electrochemical results indicate a high energy density of 42 Wh kg−1 at a power density of 0.75 kW kg−1, which makes this hollow nanostructure a highly promising electrode for achieving high-performance next-generation supercapacitors.  相似文献   

2.
Porous organic polymers (POPs) with high physiochemical stability and pseudocapacitive activity are crucial for supercapacitors with high specific capacitance and long cycle life. We report herein a hexaazatrinaphthylene-based POP (HPOP-1) for high-performance supercapacitor by introducing redox-active hexaazatrinaphthylene (HATN) moiety through Sonogashira–Hagihara coupling reaction. HATN moiety can undergo a proton-induced electron transfer redox reaction, which endows HPOP-1 with high pseudocapacitive activity. As electrode materials for supercapacitor application, HPOP-1 exhibits high specific capacitance (667 F g−1 at 0.5 A g−1) and long-term cyclic stability (90% capacitance retention after 10,000 cycles at 5 A g−1) in a three-electrode system with 1 M H2SO4 as the electrolyte. In addition, HPOP-1 also exhibits a specific capacitance of 376 F g−1 at 0.5 A g−1 in 1 M KOH electrolyte. An asymmetric supercapacitor was further fabricated with HPOP-1 as negative electrode and rGO as positive electrode, respectively. The device delivers a specific capacitance of 63 F g−1 at 0.5 A g−1 and a rate performance of 37 F g−1 at 5 A g−1. Our work provides a facile approach for the design and preparation of pseudocapacitive POPs with high specific capacitance and long cycle life.  相似文献   

3.
Due to excellent electrochemical performances, mixed transition metal oxides (TMOs) as electrode materials have attracted scholarly attention. However, the issues of volume expansion, unstable structure, and low electrical conductivity have limited their development for lithium battery (LIB). Drawing on the strategy of MOFs derivation synthesis combined with low temperature hydrothermal method, this study successfully synthesized the three-dimensional (3D) NiCo2O4@Fe2O3 with a flower-like crossing channel and a surface crumpled structure. As anode for LIBs, NiCo2O4@Fe2O3 exhibits more reliable performance than Ni−Co oxides. Our experiments verified that the Ni−Co composite electrical conductivity and cycling stability were both improved by the Fe2O3 coating. Under the high current density of 1000 mA g−1, the capacity decay rate of NiCo2O4@Fe2O3 tends to be stable after 60 cycles, and the capacity remains at 945 mAh g−1 after 400 cycles. Besides, the specific crossing porous-channel structure mode improved the composite's carrier transport efficiency, and coulombic efficiency reached 100 % after 400 cycles. Noteworthy is the fact that the crumpled surface structure formed by the 2D Ni−Co nanosheets promotes the construction of heterostructures, further enhances the interface capacitance effect, and strengthens the rating capacity.  相似文献   

4.
We have synthesized and characterized perovskite‐type SrCo0.9Nb0.1O3−δ (SCN) as a novel anion‐intercalated electrode material for supercapacitors in an aqueous KOH electrolyte, demonstrating a very high volumetric capacitance of about 2034.6 F cm−3 (and gravimetric capacitance of ca. 773.6 F g−1) at a current density of 0.5 A g−1 while maintaining excellent cycling stability with a capacity retention of 95.7 % after 3000 cycles. When coupled with an activated carbon (AC) electrode, the SCN/AC asymmetric supercapacitor delivered a specific energy density as high as 37.6 Wh kg−1 with robust long‐term stability.  相似文献   

5.
Two types of ternary metal oxides, MnCo2O4.5 and MnNi6O8 nanoparticles have been separately synthesized through chemical transformation from the corresponding bimetallic coordination polymer particles precursor under high-heating conditions. Series of electrochemical measurements are performed to examine the MnCo2O4.5 and MnNi6O8 electrodes, and the result shows that MnCo2O4.5 structure, especially for Mn/Co-600, has much higher capacitance than that of MnNi6O8 nanoparticles, indicating MnCo2O4.5 electrode is more suitable for applying in neutral electrolyte system. The Mn/Co-600 electrode exhibits a specific capacitance of 158 F g−1 at 5 mV s−1, good rate capability of 53.8% with a 20 times current density increase, good cycle performance (92.9% capacitance retention after 1000 cycles) and high power density (a specific power of 5760 W kg−1 at 4.0 A g−1) with low charge transfer resistance value of 1.8 Ω.  相似文献   

6.
To avoid an enormous energy crisis in the not-too-distant future, it be emergent to establish high-performance energy storage devices such as supercapacitors. For this purpose, a three-dimensional (3D) heterostructure of Co3O4 and Co3S4 on nickel foam (NF) that is covered by reduced graphene oxide (rGO) has been prepared by following a facile multistep method. At first, rGO nanosheets are deposited on NF under mild hydrothermal conditions to increase the surface area. Subsequently, nanowalls of cobalt oxide are electro-deposited on rGO/Ni foam by applying cyclic-voltammetry (CV) under optimized conditions. Finally, for the synthesis of Co3O4@Co3S4 nanocomposite, the nanostructure of Co3S4 was fabricated from Co3O4 nanowalls on rGO/NF by following an ordinary hydrothermal process through the sulfurization for the electrochemical application. The samples are characterized by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The obtained sample delivers a high capacitance of 13.34 F cm−2 (5651.24 F g−1) at a current density of 6 mA cm−2 compared to the Co3O4/rGO/NF electrode with a capacitance of 3.06 F cm−2 (1230.77 F g−1) at the same current density. The proposed electrode illustrates the superior electrochemical performance such as excellent specific energy density of 85.68 W h Kg−1, specific power density of 6048.03 W kg−1 and a superior cycling performance (86% after 1000 charge/discharge cycles at a scan rate of 5 mV s−1). Finally, by using Co3O4 @Co3S4/rGO/NF and the activated carbon-based electrode as positive and negative electrodes, respectively, an asymmetric supercapacitor (ASC) device was assembled. The fabricated ASC provides an appropriate specific capacitance of 79.15 mF cm−2 at the applied current density of 1 mA cm−2, and delivered an energy density of 0.143 Wh kg−1 at the power density of 5.42 W kg−1.  相似文献   

7.
Graphene nanosheets, polyaniline (PANI), and nanocrystallites of transition metal ferrite {Fe3O4 (Mag), NiFe2O4 (NiF), and CoFe2O4 (CoF)} have been prepared and characterized via XRD, FTIR, SEM, TEM, UV–vis spectroscopy, cyclic voltammetry, galvanostatic charge discharges, and impedance spectroscopy. Electrochemical measurements showed that supercapacitances of hybrid electrodes made of the ternary materials are higher than that of hybrid electrode made of binary or single material. The ternary hybrid CoF/graphene (G)/PANI electrode exhibits a highest specific capacitance reaching 1123 Fg?1, an energy density of 240 Wh kg?1 at 1 A g?1, and a power density of 2680 Wkg?1 at 1 A g?1 and outstanding cycling performance, with 98.2% capacitance retained over 2000 cycles. The extraordinary electrochemical performance of the ternary CoF/G/PANI hybrid can be attributed to the synergistic effects of the individual components. The PANI conducting polymer enhances an electron transport. The Ferrite nanoparticles prevent the restocking of the carbon sheets and provide Faradaic processes to increase the total capacitance.  相似文献   

8.
Oxygen defects and hollow structures positively impact pseudocapacitive properties of diffusion/surface-controlled processes, a component of critical importance when building high-performance supercapacitors. Hence, we fabricated hollow nickel/cobalt molybdate rods with O-defects (D−H−NiMoO4@CoMoO4) through a soft-template and partial reduction method, enhancing D−H−NiMoO4@CoMoO4’s electrochemical performance, yielding a specific capacitance of 1329 F g−1, and demonstrating excellent durability with 95.8 % capacity retention after 3000 cycles. D−H−NiMoO4@CoMoO4 was used as the positive electrode to construct an asymmetric supercapacitor, displaying an energy density of up to 34.13 Wh kg−1 and demonstrating good predisposition towards practical applications. This work presents an effective approach to fabricate and use hollow nickel/cobalt molybdate rods with O-defects as pseudocapacitor material for high-performance capacitive energy storage devices.  相似文献   

9.
The development of metal–organic frameworks (MOFs)-based supercapacitors have attracted intense concentration in recent years due to their regularly arranged porous and tunable pore sizes. However, the performance of the MOFs-derived supercapacitors is also low because of their poor electrical conductivity and rarely accessible active sites. In the present work, we developed a Co-MOF (namely Co2BIM4, BIM=benzimidazole) nanosheets derived Co3O4/nitrogen-doped carbon (Co2BIM4-Co3O4/NC) heteroaerogel as a novel supercapacitor electrode. The 3D Co2BIM4-Co3O4/NC heteroaerogels were obtained by directly intercalating polyethyleneimine (PEI) into the interlayers of Co2BIM4 nanosheets and following by carbonizing the resulting Co2BIM4/PEI composite. The Co2BIM4-Co3O4/NC electrode possessed 3D conductive framework with an overlapped hetero-interface and expanded interlayers, leading to fast and stable charge transfer/diffusion and an enhanced pseudocapacitance performance. Therefore, the Co2BIM4-Co3O4/NC electrode showed ultrahigh capacitance of 2568 F g−1 at 1 A g−1, 1747 F g−1 at 10 A g−1, and excellent long cycling time with a capacitance preservation of 92.7 % following 10000 cycles at 10 A g−1, which is very promising for applications in supercapacitors and other energy storage devices.  相似文献   

10.
We report a convenient, low-cost and ecofriendly approach for the fabrication of a Co3O4/CoOOH electrode material intended for lithium ion batteries (LIBs) and supercapacitors (SCs) using the electrochemical dispersion of the cobalt foil through the pulse alternating current (PAC) method. The synthesized material is a Co3O4/CoOOH composite (with about 10–15 wt% CoOOH) in the form of nanosheets with a length of approximately 200 nm and a thickness of 10–20 nm. It is found to exhibit high reversible discharge specific capacities and good cycling behavior while tested as the anode material in LIBs. Measuring the reversible capacitance at high (2C) and low (C/20) cycling rates gives the values of 610 mAh g−1 and 1030 mAh g−1, respectively. The specimen possesses excellent performance as the electrode for SCs with the retention of capacitance up to 98% at the current density increasing from 0.5 to 10 A g−1. After 1000 cycles at a current density of 10 A g−1 the electrode maintains about 90% of its initial capacitance which evidences the long cycle life. Hence, electrochemically prepared Co3O4/CoOOH seems to be a promising candidate for high-performance LIBs and SCs applications.  相似文献   

11.
Meso-macroporous Co3O4 electrode is synthesized by drop coating with a mixed solution containing Co(OH)2 colloid, polystyrene spheres, and carbowax (namely polyethylene glycol), followed by calcining at 400?°C to remove polystyrene spheres and carbowax. For comparison, nonporous Co3O4 and mesoporous Co3O4 electrodes are prepared by drop coating with Co(OH)2 colloid and with a mixed solution containing Co(OH)2 colloid and carbowax under the same condition, respectively. Capacitive property of these electrodes is measured by cyclic voltammetry, potentiometry and electrochemical impedance spectroscopy. The results show that meso-macroporous Co3O4 electrode exhibits larger specific capacitance than those of nonporous Co3O4 electrode and mesoporous Co3O4 electrode at various current densities. The specific capacitance of meso-macroporous Co3O4 electrode at the current density of 0.2?A?g?1 is 453?F?g?1. Meanwhile, meso-macroporous Co3O4 electrode possesses the highest specific capacitance retention ratio at the current density ranging from 0.2 to 1.0?A?g?1, indicating that meso-macroporous Co3O4 electrode suits to high-rate charge?Cdischarge.  相似文献   

12.
The exploration of the rational design and synthesis of unique and robust architectured electrodes for the high capacitance, rate capability, and stability of supercapacitors is crucial to the future of energy storage technology. Herein, an in situ synthesis of multilayered titanium carbide MXene tightly caging within a 3 D conducting tangled polypyrrole (PPy) nanowire (NW) network is proposed as an effective strategy to prevent the aggregation of MXene, profoundly enhancing the electrochemical performance of the supercapacitor. Owing to the beneficial effects of an ideal 3 D interconnected porous structure and high electrical conductivity, the obtained electrode exhibits fast charge and ion transport kinetics as well as full usage of active material. As expected, the 3 D Ti3C2Tx@PPY NW exhibits a specific capacitance five times higher than that of pristine MXene (610 F g−1), a good rate capability up to a current density of 25 A g−1, and excellent stability with 100 % retention after 14 000 cycles at 4 A g−1, outperforming the known state-of-the-art MXene-based supercapacitor. Our work provides a facile method for enhancing the performance of MXene-based energy storage devices.  相似文献   

13.
With their adjustable structures and diverse functions, polyoxometalate (POM)-resorcin[4]arene-based inorganic–organic complexes are a kind of potential multifunctional material. They have potential applications for lithium ion batteries (LIBs). However, the relationship between different coordinated metal ions and electrochemical performance has rarely been investigated. Here, three functionalized POM-resorcin[4]arene-based inorganic–organic materials, [Co2(TMR4 A)2(H2O)10][SiW12O40] ⋅ 2 EtOH ⋅ 4.5 H2O ( 1 ), [Ni2(TMR4 A)2(H2O)10][SiW12O40] ⋅ 4 EtOH ⋅ 13 H2O ( 2 ), and [Zn2(TMR4 A)2(H2O)10][SiW12O40] ⋅ 2 EtOH ⋅ 2 H2O ( 3 ), have been synthesized. Furthermore, to enhance the conductivities of these compounds, 1–3 were doped with reduced graphene oxide (RGO) to give composites 1 @RGO- 3 @RGO, respectively. As anode materials for LIBs, 1 @RGO- 3 @RGO can deliver very high discharge capacities (1445.9, 1285.0 and 1095.3 mAh g−1, respectively) in the initial run, and show discharge capacities of 898, 665 and 651 mAh g−1, respectively, at a current density of 0.1 A g−1 over 100 runs. More importantly, the discharge capacities of 319, 283 and 329 mAh g−1 were maintained for 1 @RGO- 3 @RGO even after 400 cycles at large current density (1 A g−1).  相似文献   

14.
《先进技术聚合物》2018,29(6):1697-1705
Nanocomposites of gold nanoparticles and polyaniline are synthesized by using HAuCl4 and ammonium peroxydisulfate as the co‐oxidant involving in situ polymerization of aniline and in situ reduction of HAuCl4. Through these in situ methods, the synthesized Au nanoparticles of ca. 20 nm embedded tightly and dispersed uniformly in polyaniline backbone. With the Au content in composite increasing from 4.20 to 24.72 wt.%, the specific capacitance of the materials first increased from 334 to 392 F g−1 and then decreased to 298 F g−1. Based on the real content of PANI in composite material, the highest specific capacitance is calculated to be 485 F g−1 at the Au amount of 19.15 wt.%, which remains 55.6% after 5000 cycles at the current density of 2 A g−1. Finally, the asymmetric supercapacitor of AuNP/PANI||AC and the symmetric supercapacitor of AuNP/PANI||AuNP/PANI are assembled. The asymmetric supercapacitor device shows a better electrochemical performance, which delivers the maximum energy density of 7.71 Wh kg−1 with power density of 125 W kg−1 and maximum power density of 2500 W kg−1 with the energy density of 5.35 Wh kg−1.  相似文献   

15.
Transition metal sulfides have emerged as promising materials in supercapacitor. In this work, we firstly developed an interface-induced superassembly approach to fabricate NiSx and CoSx nanoparticles, which based on ordered mesoporous carbon-graphene aerogel composites for supercapacitor electrodes. The obtained multi-component superassembled nanoparticles-carbon matrix composites have controllable 3D porous structure of multi-stage composite. The two-dimensional graphene interlaced to form a 3D framework with large sponge-like pores, and then the graphene surface was loaded with mesoporous carbon with mesoporous pore size and vertical orientation. The composites display high specific capacitance of 958.1 F g−1 at 0.1 A g−1. The capacitance retains about 97.3 % after 3000 charging-discharging cycles at 2 A g−1. These results indicate that the obtained OMC−GA−Ni3S2/Co4S3 is a promising material for electrochemical capacitors, which providing new technical methods and ideas for the research of new energy and analytical sensor materials in the fields of energy storage, photocatalysis, point-of-care testing devices and other fields.  相似文献   

16.
Evrim Hur  Andac Arslan 《Chemical Papers》2014,68(11):1573-1583
Cobalt ion (Co2+)-doped polyaniline (PANI-Co), poly(N-methylaniline) (PNMA-Co), and poly(N-ethylaniline) (PNEA-Co) films were synthesised electrochemically on a pencil graphite electrode (PGE) and their electrochemical properties were investigated for supercapacitor applications. The polymer film-coated electrodes (PGE/PANI-Co, PGE/PNMA-Co, and PGE/PNEA-Co) thus obtained were characterised by scanning electron microscopy (SEM) and different electrochemical methods. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements were employed in 0.1 M H2SO4 solution to calculate the specific capacitance (C S) values of the electrodes. The maximum C S of 192.94 F g?1, 139.83 F g?1, and 47.12 F g?1 were achieved for PGE/PANI-Co, PGE/PNMA-Co, and PGE/PNEA-Co at 1 mV s?1, respectively. On the other hand, the charge/discharge stability of the electrodes was analysed using the repeating chronopotentiometry (RCP) method. The RCP measurements indicate that the electrodes could be used as an electrode active material for low voltage supercapacitor applications.  相似文献   

17.
Rational designing and constructing multiphase hybrid electrode materials is an effective method to compensate for the performance defects of the single component. Based on this strategy, Cu2Se hexagonal nanosheets@Co3Se4 nanospheres mixed structures have been fabricated by a facile two-step hydrothermal method. Under the synergistic effect of the high ionic conductivity of Cu2Se and the remarkable cycling stability of Co3Se4, Cu2Se@Co3Se4 can exhibit outstanding electrochemical performance as a novel electrode material. The as-prepared Cu2Se@Co3Se4 electrode displays high specific capacitance of 1005 F g−1 at 1 A g−1 with enhanced rate capability (56 % capacitance retention at 10 A g−1), and ultralong lifespan (94.2 % after 10 000 cycles at 20 A g−1). An asymmetric supercapacitor is assembled applying the Cu2Se@Co3Se4 as anode and graphene as cathode, which delivers a wide work potential window of 1.6 V, high energy density (30.9 Wh kg−1 at 0.74 kW kg−1), high power density (21.0 Wh kg−1 at 7.50 kW kg−1), and excellent cycling stability (85.8 % after 10 000 cycles at 10 A g−1).  相似文献   

18.
MXenes are a new family of 2 D transition metal carbides and nitrides, which have attracted enormous attention in electrochemical energy storage, sensing technology, and catalysis owing to their good conductivity, high specific surface area, and excellent electrochemical properties. In this work, a series of Co3O4-doped 3 D MXene/RGO hybrid porous aerogels is designed and prepared through a facile in situ reduction and thermal annealing process, in which the reduced graphene oxide (RGO) conductive network can electrically link the separated Co3O4-MXene composite nanosheets, leading to enhanced electronic conductivity. It is found that upon using the Co3O4-MXene/RGO hybrid porous aerogel prepared with a mass ratio of Co3O4-MXene/RGO of 3:1 (CMR31) as an electrode for a supercapacitor, a superior specific capacitance of 345 F g−1 at the current density of 1 A g−1 is achieved, which is significantly higher than those of Ti3C2Tx MXene, RGO, and MXene/RGO electrodes. In addition, a high capacitance retention (85 % of the initial capacitance after 10 000 cycles at a high current density of 3 A g−1) and a low internal resistance Rs (0.44 Ω) can be achieved. An all-solid-state asymmetric supercapacitor (ASC) device is assembled using CMR31, and it has the ability to light up a blue LED indicator for 5 min if four ASCs are connected in series. Therefore, these novel Co3O4-MXene/RGO hybrid porous aerogels have potential practical applications in high-energy storage devices.  相似文献   

19.
A simple and versatile method for general synthesis of uniform one‐dimensional (1D) MxCo3−xS4 (M=Ni, Mn, Zn) hollow tubular structures (HTSs), using soft polymeric nanofibers as a template, is described. Fibrous core–shell polymer@M‐Co acetate hydroxide precursors with a controllable molar ratio of M/Co are first prepared, followed by a sulfidation process to obtain core–shell polymer@MxCo3−xS4 composite nanofibers. The as‐made MxCo3−xS4 HTSs have a high surface area and exhibit exceptional electrochemical performance as electrode materials for hybrid supercapacitors. For example, the MnCo2S4 HTS electrode can deliver specific capacitance of 1094 F g−1 at 10 A g−1, and the cycling stability is remarkable, with only about 6 % loss over 20 000 cycles.  相似文献   

20.
Binary transition-metal oxides (BTMOs) with hierarchical micro–nano-structures have attracted great interest as potential anode materials for lithium-ion batteries (LIBs). Herein, we report the fabrication of hierarchical cauliflower-like CoFe2O4 (cl-CoFe2O4) via a facile room-temperature co-precipitation method followed by post-synthetic annealing. The obtained cauliflower structure is constructed by the assembly of microrods, which themselves are composed of small nanoparticles. Such hierarchical micro–nano-structure can promote fast ion transport and stable electrode–electrolyte interfaces. As a result, the cl-CoFe2O4 can deliver a high specific capacity (1019.9 mAh g−1 at 0.1 A g−1), excellent rate capability (626.0 mAh g−1 at 5 A g−1), and good cyclability (675.4 mAh g−1 at 4 A g−1 for over 400 cycles) as an anode material for LIBs. Even at low temperatures of 0 °C and −25 °C, the cl-CoFe2O4 anode can deliver high capacities of 907.5 and 664.5 mAh g−1 at 100 mA g−1, respectively, indicating its wide operating temperature. More importantly, the full-cell assembled with a commercial LiFePO4 cathode exhibits a high rate performance (214.2 mAh g−1 at 5000 mA g−1) and an impressive cycling performance (612.7 mAh g−1 over 140 cycles at 300 mA g−1) in the voltage range of 0.5–3.6 V. Kinetic analysis reveals that the electrochemical performance of cl-CoFe2O4 is dominated by pseudocapacitive behavior, leading to fast Li+ insertion/extraction and good cycling life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号