首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
With the discovery of circulating cell-free fetal DNA (cffDNA) in maternal plasma, noninvasive prenatal testing became possible. However, analysis of low-level cffDNA against high background maternal DNA remains complicated and challenging. To circumvent this limitation, selective amplification of cffDNA was used in this study. Two kinds of compound markers (namely DIP-STR and SNP-STR), both based on selective amplification, were used here for targeting fetal DNA. By designing two allele-specific forward primers for DIP-STR and SNP-STR, DNA fragments with different DIP/SNP alleles can be selectively amplified. When analyzing maternal plasma DNA, these markers can selectively target paternally inherited fetal alleles whose DIP/SNP allele was not shared with the mother. In this study, 21 families were studied with six DIP-STRs and 11 SNP-STRs. Fetal DNA was successfully detected across plasma samples for at least one marker. Detection rate varied between DIP-STR and SNP-STR markers, and DIP-STR outperforms SNP-STR. Fetal alleles obtained from maternal plasma were double confirmed by genotyping paternal genomic DNA and fetal genomic DNA from amniocentesis. This study demonstrated that selective amplification strategy can be used to target cffDNA in maternal plasma, which will be a promising method for noninvasive prenatal paternity testing.  相似文献   

2.
Hong Zhao  Junfeng Luo  Zuhong Lu 《Talanta》2010,82(2):477-482
Massively parallel genomic DNA fragments display on chip plays a key role in the new generation DNA sequencing. Here, we developed a new technology to display the parallel genomic DNA fragment massively based on two-step reaction with Ф29 DNA polymerase. The genomic DNA fragments were firstly amplified by rolling-circle amplification (RCA) reaction in liquid phase, and then amplified further on the chip by the strand displacement of Ф29 DNA polymerase. In our experiments, through DNA colonies produced by two-step amplification reaction T7 genomic DNA fragments are displayed massively and parallely on the chip, which has been verified through hybridizing the probe labeled with fluorescence or extension reaction with fluorescent-dNTP. The significant difference of fluourescence signals between background and displayed DNA fragments could be obtained. Our results show that the method has good reproducibility in experiments, which may be hopeful to serve the high-throughput sequencing.  相似文献   

3.
《Analytical letters》2012,45(8):1540-1548
Abstract

The discovery of fetal DNA in maternal plasma has made non‐invasive prenatal diagnosis possible. Microarrays are promising tools for detecting fetal DNA for such purposes. We report the development of a microarray based quantitative detection method and the investigation of fetal DNA levels at different gestation ages and in abnormal pregnancies. Samples from 66 male carriers at different gestation stages and 6 male carriers from abnormal pregnancies were collected and DNA microarrays were used to measure the level of fetal DNA in maternal plasma in these samples. The male‐specific DYS gene was used as the male fetus marker. Results showed that the fetal DNA levels in maternal plasma increased with the gestation age. The level of fetal DNA in Down's syndrome pregnancy samples was higher than in control samples, while no differences were found between gestational hypertension samples and the control.  相似文献   

4.
Today, we can read human genomes and store digital data robustly in synthetic DNA. Herein, we report a strategy to intertwine these two technologies to enable the secure storage of valuable information in synthetic DNA, protected with personalized keys. We show that genetic short tandem repeats (STRs) contain sufficient entropy to generate strong encryption keys, and that only one technology, DNA sequencing, is required to simultaneously read the key and the data. Using this approach, we experimentally generated 80 bit strong keys from human DNA, and used such a key to encrypt 17 kB of digital information stored in synthetic DNA. Finally, the decrypted information was recovered perfectly from a single massively parallel sequencing run.  相似文献   

5.
Today, we can read human genomes and store digital data robustly in synthetic DNA. Herein, we report a strategy to intertwine these two technologies to enable the secure storage of valuable information in synthetic DNA, protected with personalized keys. We show that genetic short tandem repeats (STRs) contain sufficient entropy to generate strong encryption keys, and that only one technology, DNA sequencing, is required to simultaneously read the key and the data. Using this approach, we experimentally generated 80 bit strong keys from human DNA, and used such a key to encrypt 17 kB of digital information stored in synthetic DNA. Finally, the decrypted information was recovered perfectly from a single massively parallel sequencing run.  相似文献   

6.
Yang Y  Wang W  Li Y  Tu J  Bai Y  Xiao P  Zhang D  Lu Z 《Electrophoresis》2010,31(21):3537-3544
DNA methylation is one of the most important epigenetic modification types, which plays a critical role in gene expression. High efficient surveying of whole genome DNA methylation has been aims of many researchers for long. Recently, the rapidly developed massively parallel DNA‐sequencing technologies open the floodgates to vast volumes of sequence data, enabling a paradigm shift in profiling the whole genome methylation. Here, we describe a strategy, combining methylated DNA immunoprecipitation sequencing with peak search to identify methylated regions on a whole‐genome scale. Massively parallel methylated DNA immunoprecipitation sequencing combined with methylation DNA immunoprecipitation was adopted to obtain methylated DNA sequence data from human leukemia cell line K562, and the methylated regions were identified by peak search based on Poison model. From our result, 140 958 non‐overlapping methylated regions have been identified in the whole genome. Also, the credibility of result has been proved by its strong correlation with bisulfite‐sequencing data (Pearson R2=0.92). It suggests that this method provides a reliable and high‐throughput strategy for whole genome methylation identification.  相似文献   

7.
Human plasma is an important medical substance and a raw material for production of various therapeutics. During blood sampling, storage and processing, genomic DNA is released into plasma from nucleated blood cells that are damaged in the course of the procedure. In order to determine the concentration of contaminating DNA in plasma, we developed a method for DNA isolation by using anion-exchange chromatography on a BIA Separations CIM (convective interaction media) diethylaminoethyl column. DNA was quantified by SYBR Green based real-time polymerase chain reaction. The concentration of cell-free, non-apoptotic DNA in plasma ranged between 0.06 and 22.5 ng/ml. As substantial volumes of plasma or whole blood are administered directly into the vascular system, a recipient is exposed to high amounts of cell-free DNA, several orders of magnitude higher than the amount found in other biologicals.  相似文献   

8.
We used the variable number tandem repeat (VNTR) polymorphism and the ten short tandem repeat (STR) polymorphisms to study a number of disputed paternity cases in the Japanese population. For the determination of VNTR locus (D1S80) and the ten STR loci (vWA, F13B, TH01, TPOX, CSF1PO, F13A01, LPL, D3S1744, D12S1090, D18S849) we used polymerase chain reaction (PCR) amplification and the vertical polyacrylamide gel electrophoresis technique followed by SYBR green I staining. The irregular repeats were analyzed by sequencing from bands of vertical polyacrylamide gel electrophoresis using the latest gene analyzing equipment, the ABI PRISM 310 Genetic Analyzer. The probable genotypes of the deceased putative father were deduced by Komatu's method from the genotypes of the widow and the genotypes of their children. The calculation of paternity probability used the Essen-Moller formula and Bayes's theorem. Calculated in eleven loci, the distinguishing probabilities (DP) and the mean exclusion chance (MEC) were 0.9999 and 0.9989, respectively. Therefore, information obtained from eleven DNA polymorphisms is enough to determine paternity plausibility.  相似文献   

9.
Li Y  Wenzel F  Holzgreve W  Hahn S 《Electrophoresis》2006,27(19):3889-3896
The determination of fetal point mutations from fetal cell-free DNA (cf-DNA) in maternal plasma is technically challenging due to the preponderance of maternal sequences. It has recently been shown that fetal cf-DNA sequences are smaller than maternal ones and that the selection of small cf-DNA fragments by size fractionation by agarose gel electrophoresis leads to the enrichment of fetal cf-DNA sequences, thereby permitting the detection of otherwise masked fetal point mutations. In a separate development, the use of MALDI-TOF MS has also been shown to facilitate the detection of fetal point mutations from cf-DNA in maternal plasma. In this study, a combination of these approaches was examined. cf-DNA was extracted from 18 maternal plasma samples, 10 taken at term and 8 obtained early in the second trimester. A total of 41 SNP loci were examined in size-fractionated and total cf-DNA using either a conventional homogeneous MassEXTEND (hME) assay or a nucleotide-specific single allele base extension reaction (SABER) assay. The analysis of total cf-DNA indicated that size fractionation considerably enhanced the sensitivity of the standard hME assay, especially for samples taken early in pregnancy. Size fractionation also rendered the signals obtained by the SABER assay more precise.  相似文献   

10.
The need to identify a missing person (MP) through kinship analysis of DNA samples found at a crime scene has become increasingly prevalent. DNA samples from MPs can be severely degraded, contain little DNA and mixed with other contributors, which often makes it difficult to apply conventional methods in practice. This study developed a massively parallel sequencing–based panel that contains 1661 single-nucleotide polymorphisms (SNPs) with low minor allele frequencies (MAFs) (averaged at 0.0613) in the Chinese Han population, and the strategy for relationship inference from DNA mixtures comprising different numbers of contributors (NOCs) and of varying allele dropout probabilities. Based on the simulated dataset and genotyping results of 42 artificial DNA mixtures (NOC = 2–4), it was observed that the present SNP panel was sufficient for balanced mixtures when referenced to the closest relatives (parents/offspring and full siblings). When the mixture profiles suffered from dropout, incorrect assignments were markedly associated with relatedness, NOC and the dropout level. We, therefore, indicate that SNPs with low MAFs could be reliably interpreted for MP identification through the kinship analysis of complex DNA mixtures. Further studies should be extended to more possible scenarios to test the feasibility of this present approach.  相似文献   

11.
Guttman A  Rónai Z 《Electrophoresis》2000,21(18):3952-3964
Emerging need for large-scale, high-resolution analysis of biopolymers, such as DNA sequencing polymerase chain reaction, (PCR) product sizing, single nucleotide polymorphism (SNP) hunting and analysis of protein molecules necessitated the development of automated and high-throughput gel electrophoresis based methods enabling rapid, high-performance separations in a wide molecular weight range. Scaling down electric field mediated separation processes supports higher throughput due to the applicability of higher voltages, thus speeding up analysis time. Indeed, efforts in miniaturization resulted in faster, easier, less costly and more convenient analyses, fulfilling the needs of the emerging biotechnology industry for microscale and massively parallel assays. The two primary approaches in miniaturizing electrophoresis dimensions are the capillary and microslab formats. This latter one evolved towards ultrathin-layer gel electrophoresis which is, except from the thickness of the separation platform, slightly in the upper side of the scale, resulting in considerably easier handling. Ultrathin-layer gel electrophoresis combines the advantages of conventional slab-gel electrophoresis (multilane format) and capillary gel electrophoresis (rapid, high-efficiency separations). It is readily automated, automatic versions of it have been extensively used for large-scale DNA sequencing in the Human Genome Project and more recently became popular in high throughput DNA fragment analysis. Ultrathin-layer techniques are the first step towards the wider use of electrophoresis microchips in perfecting a user-friendly interface between the user and the microdevice.  相似文献   

12.
Whole genome amplification replicates the entire DNA content of a sample and can thus help to circumvent material limitations when insufficient DNA is available for planned genetic analyses. However, there are conflicting data in the literature whether whole genome amplification introduces bias or reflects precisely the spectrum of starting DNA. We analyzed the origins of discrepancies in KRAS (Kirsten rat sarcoma viral oncogene homolog gene) mutation detection in six of ten samples amplified using the GenomePlex® Tissue Whole Genome Amplification kit 5 (WGA5; Sigma‐Aldrich, St. Louis, MO, USA) and KRAS StripAssay® (KRAS SA; ViennaLab Diagnostics, Vienna, Austria). We undertook reextraction, reamplification, retyping, authentication, reanalysis, and reinterpretation to determine whether the discrepancies originated during the preanalytical, analytical, and/or interpretative phase of genotyping. We conclude that a combination of glass slide/sample heterogeneity and biased amplification due to stochastic effects in the early phases of whole genome amplification (WGA) may have adversely affected the results obtained. Our findings are relevant for both forensic genetics testing and massively parallel sequencing using preamplification.  相似文献   

13.
The emergence of high‐throughput DNA sequencing technologies sparked a revolution in the field of genomics that has rippled into many branches of the life and physical sciences. The remarkable sensitivity, specificity, throughput, and multiplexing capacity that are inherent to parallel DNA sequencing have since motivated its use as a broad‐spectrum molecular counter. A key aspect of extrapolating DNA sequencing to non‐traditional applications is the need to append nucleic‐acid barcodes to entities of interest. In this review, we describe the chemical and biochemical approaches that have enabled nucleic‐acid barcoding of proteinaceous and non‐proteinaceous materials and provide examples of downstream technologies that have been made possible by DNA‐encoded molecules. As commercially available high‐throughput sequencers were first released less than 15 years ago, we believe related applications will continue to mature and close by proposing new frontiers to support this assertion.  相似文献   

14.
Pyrosequencing is a relatively recent method for sequencing short stretches of DNA. Because both Pyrosequencing and Sanger dideoxy sequencing were recently used to characterize and validate DNA molecular barcodes in a large yeast gene-deletion project, a meta-analysis of those data allow an excellent and timely opportunity for evaluating Pyrosequencing against the current gold standard, Sanger dideoxy sequencing. Starting with yeast genomic DNA, parallel PCR amplification methods were used to prepared 4747 short barcode-containing constructs from 6000 Saccharomyces cerevisiae gene-deletion strains. Pyrosequencing was optimized for average read lengths of 25-30 bases, which included in each case a 20-mer barcode sequence. Results were compared with sequence data obtained by the standard Sanger dideoxy chain termination method. In most cases, sequences obtained by Pyrosequencing and Sanger dideoxy sequencing were of comparable accuracy, and the overall rate of failure was similar. The DNA in the barcodes is derived from synthetic oligonucleotide sequences that were inserted into yeast-deletion-strain genomic DNA by homologous recombination and represents the most significant amount of DNA from a synthetic source that has been sequenced to date. Although more automation and quality control measures are needed, Pyrosequencing was shown to be a fast and convenient method for determining short stretches of DNA sequence.  相似文献   

15.
Summary Quantum chemistry has become an essential tool in many areas of chemical research; however, quantum chemistry is not yet playing a role in many exciting new chemical disciplines, such as medicinal chemistry and materials science, where the size of the chemical systems has been too large to study usingab initio chemical methods. The development of massively parallel supercomputers offers the potential to predict properties relevant to a variety of problems in these burgeoning new fields. The goal of this project is to develop a set of parallelized production codes for initially a relatively limited set of methods. As a key part of this project we are experimenting with the use of modern programming languages and methodologies to make these programs both portable and reusable. This paper describes the development of a massively parallel direct SCF program, MPSCF. For systems over a few hundred basic functions, MPSCF running on 256 nCUBE processors performs nearly as well as Gaussian 90 running on a single processor Cray Y-MP. On the next generation of parallel computers, such as the Intel Touchstone Delta, MPSCF should allow the SCF calculations on chemical systems too large for vector supercomputers.  相似文献   

16.
By compartmentalizing reactions in aqueous microdroplets of water-in-oil emulsions, reaction volumes can be reduced by factors of up to 10(9) compared to conventional microtitre-plate based systems. This allows massively parallel processing of as many as 10(10) reactions in a total volume of only 1 ml of emulsion. This review describes the use of emulsions for directed evolution of proteins and RNAs, and for performing polymerase chain reactions (PCRs). To illustrate these applications we describe certain specific experiments, each of which exemplifies a different facet of the technique, in some detail. These examples include directed evolution of Diels-Alderase and RNA ligase ribozymes and several classes of protein enzymes, including DNA polymerases, phosphotriesterases, beta-galactosidases and thiolactonases. We also describe the application of emulsion PCR to screen for rare mutations and for new ultra-high throughput sequencing technologies. Finally, we discuss the recent development of microfluidic tools for making and manipulating microdroplets and their likely impact on the future development of the field.  相似文献   

17.
A procedure used for haptoglobin (Hp) typing in paternity cases has been evaluated. All serum samples have been subtyped with a one-dimensional isoelectric focusing/immunoblotting method, and samples with rare or questionable patterns have been further examined by two-dimensional electrophoresis with isoelectric focusing in the first dimension followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the second dimension. The electrophoretic Hp-patterns of common and rare alpha- and beta-chain variants are shown, including allotype patterns of two new beta-chain variants and three new alpha-chain variants. Retyping of nearly 2000 individuals at intervals between 1 to 12 months revealed a typing error frequency of about 0.3%, which is considered acceptable, provided new blood samples are required in every case of paternity exclusion. Comparison of typing results obtained with the present procedure and with routine starch gel electrophoresis in more than 5000 serum samples gave conflicting results in 6 samples. The sensitivity of the described one-dimensional subtyping method was slightly better than that of starch gel electrophoresis. In 4110 unrelated individuals, involved in cases of disputed paternity the Hp 2SS 0.038, Hp 2FF 0.004, and Hp 3 (Johnson) 0.0005. These allele frequencies give a theoretical paternity exclusion rate of 32.5%, which is in accordance with the observed rate in 2200 paternity cases with more than 600 non-fathers. It is concluded that the present procedure represents a definite improvement for Hp subtyping in practical paternity diagnostics. Preliminary results with retyping of weak Hp patterns using a staining technique involving the biotin/avidin complex indicate that the sensitivity of the one-dimensional subtyping method may be substantially increased.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
We present a method for performing highly parallel PCR reactions in a picowell array (PWA) simultaneously immobilizing generated PCR products in a covalent and spatially-resolved manner onto a microscope slide via solid-phase PCR (SP-PCR). This so called PWA-SP-PCR was performed in picowell arrays featuring 100?000 wells cm(-2) of 19 pL reaction volumes with a surface-to-volume ratio of 0.2 μm(-1). Positive signals were obtained in 97.2% of the 110?000 wells in an area of 110 mm(2). Immobilized DNA was either indirectly detected using streptavidin-Cy5 or directly by molecular hybridisation of Cy3- and/or Cy5-labelled probes. Amplification and immobilization was demonstrated for template DNA ranging from 100 bp up to 1513 bp lengths. Even single DNA molecules were successfully amplified and immobilized demonstrating digital solid-phase PCR. Compared to widely established emulsion based PCR (emPCR) approaches, leading to PCR products immobilized onto bead surfaces in a highly parallel manner, the novel technique results in direct spatial registration of immobilized PCR products in a microarray format. This enables the subsequent use for massively parallel analysis similar to standard microarrays.  相似文献   

19.
Researchers are actively developing devices for the microanalysis of complex fluids, such as blood. These devices have the potential to revolutionize biological analysis in a manner parallel to the computer chip by providing very high throughput screening of complex samples and massively parallel bioanalytical capabilities. A necessary step performed in clinical chemistry is the isolation of plasma from whole blood, and effective sample preparation techniques are needed for the development of miniaturized clinical diagnostic devices. This study demonstrates the use of passive, operating entirely on capillary action, transverse-flow microfilter devices for the microfluidic isolation of plasma from whole blood. Using these planar microfilters, blood can be controllably fractionated with minimal cell lysis. A characterization of the device performance reveals that plasma filter flux is dependent upon the wall shear rate of blood in the filtration channel, and this result is consistent with macroscale blood filtration using microporous membranes. Also, an innovative microfluidic layout is demonstrated that extends device operation time via capillary action from seconds to minutes. Efficiency of these microfilters is approximately three times higher than the separation efficiencies predicted for microporous membranes under similar conditions. As such, the application of the microscale blood filtration designs used in this study may have broad implications in the design of lab-on-a-chip devices, as well as the field of separation science.  相似文献   

20.
Sexing Bovine Embryos Using PCR Amplification of Bovine SRY Sequence   总被引:2,自引:0,他引:2  
This study analyses the bovine SRY DNA sequence by direct sequencing procedure, followed by the designation of the PCR primers specific for bovine SRY. Using PCR amplification of bovine SRY gene, the embryo sex was determined. The results of the embryo sex identification were confirmed after the embryo transfer and pregnancies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号