首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
通过Adams方法成功制备MnO2-0.39IrOx(0.39为Ir/Mn的原子比)催化剂并将其用于酸性介质中高效析氧反应(OER)。电化学测试发现,MnO2-0.39IrOx仅需253 mV的过电势即可驱动10 mA·cm-2的水氧化电流密度,并可稳定运行200 h。在1.50 V(vs RHE)电势下,MnO2-0.39IrOx的贵金属Ir的质量活性为61.3 mA·mg-1,是IrO2的35.8倍,说明MnO2掺杂大大提升了贵金属利用率。结构分析发现MnO2-0.39IrOx独特的片状结构大幅度提高了催化剂的电化学活性表面积,并且Ir位点与Mn位点之间存在一定的电子相互作用。催化过程分析表明,MnO2-0.39IrOx表面出现一定的重构现象,并且Mn组分对Ir位点的化学环境实现了持续优化,从而实现了催化剂的高效酸性OER性能。  相似文献   

2.
A series of Ir1–xNixO2–y (0 ≤ x ≤ 0.5) composite oxides have been prepared by a simple pyrolysis method in ethanol system and used as the electrocatalysts for OER in acidic medium. The materials have been characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF) and scanning electron microscopy (SEM). The electrochemical performances of these Ir1–xNixO2–y composite catalysts are evaluated by cyclic voltammetry (CV) and steady-state measurements. The resulting oxides with the Ni content (x) less than 0.3 have a complex nature of metal Ir and rutile structure IrO2 which is similar to the Ir oxide prepared by the same approach and possess the contracted lattice resulted from the Ni-doping. Although the addition of Ni reduces the electroactive surface areas due to the coalescence of particles, the catalytic activity of the Ir1–xNixO2–y (0 < x ≤ 0.3) catalysts is slightly higher than that of the pyrolyzed Ir oxide. Regardless of the surface area difference, the intrinsic activity first increases and then decreases with the Ni content in Ir1–xNixO2–y catalysts, and the intrinsic activity of Ir0.7Ni0.3O2–y catalyst is about 1.4 times of the Ni-free Ir oxide mainly attributed to the enhancement of conductivity and a change of the binding energy as increasing amount of the incorporated Ni with respect to the pure IrO2. The Ir0.7Ni0.3O2–y catalyst shows a prospect of iridium-nickel oxide materials in reducing the demand of the expensive Ir oxide catalyst for OER in acidic water electrolysis.  相似文献   

3.
Mixed IrO2–TiO2 oxides were prepared by the sol–gel method upon acid-catalysed hydrolysis of an iridium solution in ethanol mixed with titanium tetraethoxide in ethanol. The iridium solution was obtained by reaction of the sodium hexachloroiridate(IV) precursor in the presence of sodium ethoxide in ethanol. Gels were formed in all but the high-Ir samples. Analysis of the dried gels showed minority-phase enrichment at the surface and the presence of Ir(III), while microscopy showed evidence for dispersed iridium-containing nanoparticles (1–20 nm in diameter). XRD powder patterns of the calcined material showed peaks due to a small amount of crystalline NaCl impurity which could be removed by washing. This left amorphous phases, except in the Ir:Ti 3:2 case, which showed evidence for the presence of separate crystalline oxide phases: anatase, IrO2 and Ti x Ir1−x O2.  相似文献   

4.
Nanoparticles of Bi3Ir, obtained from a microwave‐assisted polyol process, activate molecular oxygen from air at room temperature and reversibly intercalate it as oxide ions. The closely related structures of Bi3Ir and Bi3IrOx (x≤2) were investigated by X‐ray diffraction, electron microscopy, and quantum‐chemical modeling. In the topochemically formed metallic suboxide, the intermetallic building units are fully preserved. Time‐ and temperature‐dependent monitoring of the oxygen uptake in an oxygen‐filled chamber shows that the activation energy for oxide diffusion (84 meV) is one order of magnitude smaller than that in any known material. Bi3IrOx is the first metallic oxide ion conductor and also the first that operates at room temperature.  相似文献   

5.
Composition‐adjustable spinel‐type metal oxides, MnxCo3?xO4?δ (x=0.8–1.4), were synthesized in ethanol solutions by a rapid inorganic self‐templating mechanism using KCl nanocrystals as the structure‐directing agent. The MnxCo3?xO4?δ materials showed ultrahigh oxygen evolution activity and strong durability in alkaline solutions, and are capable of delivering a current density of 10 mA cm?2 at 1.58 V versus the reversible hydrogen electrode in 0.1 M KOH solution, which is superior in comparison to IrO2 catalysts under identical experimental conditions, and comparable to the most active noble‐metal and transition‐metal oxygen evolution electrocatalysts reported so far. The high performance for catalytic oxygen evolution originates from both compositional and structural features of the synthesized materials. The moderate content of Mn doping into the spinel framework led to their improved electronic conductivity and strong oxidizing ability, and the well‐developed porosity, accompanied with the high affinity between OH? reactants and catalyst surface, contributed to the smooth mass transport, thus endowing them with superior oxygen evolution activity.  相似文献   

6.
Electrocatalysis of water oxidation by 1.54 nm IrOx nanoparticles (NPs) immobilized on spectroscopic graphite electrodes was demonstrated to proceed with a higher efficiency than on all other, hitherto reported, electrode supports. IrOx NPs were electrodeposited on the graphite surface, and their electrocatalytic activity for water oxidation was correlated with the surface concentrations of different redox states of IrOx as a function of the deposition time and potential. Under optimal conditions, the overpotential of the reaction was reduced to 0.21 V and the electrocatalytic current density was 43 mA cm?2 at 1 V versus Ag/AgCl (3 M KCl) and pH 7. These results beneficially compete with previously reported electrocatalytic oxidations of water by IrOx NPs electrodeposited onto glassy carbon and indium tin oxide electrodes and provide the basis for the further development of efficient IrOx NP‐based electrocatalysts immobilized on high‐surface‐area carbon electrode materials.  相似文献   

7.
Highly active and durable electrocatalysts for the oxygen evolution reaction (OER) is greatly desired. Iridium oxide/graphitic carbon nitride (IrO2/GCN) heterostructures are designed with low‐coordinate IrO2 nanoparticles (NPs) confined on superhydrophilic highly stable GCN nanosheets for efficient acidic OER. The GCN nanosheets not only ensure the homogeneous distribution and confinement of IrO2 NPs but also endows the heterostructured catalyst system with a superhydrophilic surface, which can maximize the exposure of active sites and promotes mass diffusion. The coordination number of Ir atoms is decreased owing to the strong interaction between IrO2 and GCN, leading to lattice strain and increment of electron density around Ir sites and hence modulating the attachment between the catalyst and reaction intermediates. The optimized IrO2/GCN heterostructure delivers not only by far the highest mass activity among the reported IrO2‐based catalysts but also decent durability.  相似文献   

8.
We report a highly active and durable water oxidation electrocatalyst based on cubic nanocages with a composition of Ir44Pd10, together with well‐defined {100} facets and porous walls of roughly 1.1 nm in thickness. Such nanocages substantially outperform all the water oxidation electrocatalysts reported in literature, with an overpotential of only 226 mV for reaching 10 mA cm?2geo at a loading of Ir as low as 12.5 μgIr cm?2 on the electrode in acidic media. When benchmarked against a commercial Ir/C electrocatalyst at 250 mV of overpotential, such a nanocage‐based catalyst not only shows enhancements (18.1‐ and 26.2‐fold, respectively) in terms of mass (1.99 A mg?1Ir) and specific (3.93 mA cm?2Ir) activities, but also greatly enhanced durability. The enhancements can be attributed to a combination of multiple merits, including a high utilization efficiency of Ir atoms and an open structure beneficial to the electrochemical oxidation of Ir to the active form of IrOx.  相似文献   

9.
An organic‐based photocatalysis system for water oxidation, with visible‐light harvesting antennae, was constructed using periodic mesoporous organosilica (PMO). PMO containing acridone groups in the framework (Acd‐PMO), a visible‐light harvesting antenna, was supported with [RuII(bpy)32+] complex (bpy=2,2′‐bipyridyl) coupled with iridium oxide (IrOx) particles in the mesochannels as photosensitizer and catalyst, respectively. Acd‐PMO absorbed visible light and funneled the light energy into the Ru complex in the mesochannels through excitation energy transfer. The excited state of Ru complex is oxidatively quenched by a sacrificial oxidant (Na2S2O8) to form Ru3+ species. The Ru3+ species extracts an electron from IrOx to oxidize water for oxygen production. The reaction quantum yield was 0.34 %, which was improved to 0.68 or 1.2 % by the modifications of PMO. A unique sequence of reactions mimicking natural photosystem II, 1) light‐harvesting, 2) charge separation, and 3) oxygen generation, were realized for the first time by using the light‐harvesting PMO.  相似文献   

10.
Molecularly defined Ir complexes and different samples of supported IrO2 nanoparticles have been tested and compared in the catalytic water oxidation with cerium ammonium nitrate (CAN) as the oxidant. By comparing the activity of nano‐scaled supported IrO2 particles to the one of organometallic complexes it is shown that the overall activity of the homogeneous Ir precursors is defined by both the formation of the homogeneous active species and its conversion to IrIV ‐ oxo nanoparticles. In the first phase of the reaction the activity is dominated by the homogeneous active species. With increasing reaction time, the influence of nano‐sized Ir ‐ oxo particles becomes more evident. Notably, the different conversion rates of the homogeneous precursor into the active species as well as the conversion into Ir‐oxo nanoparticles and the different particle sizes have a significant influence on the overall activity. In addition to the homogeneous systems, IrO2@MCM‐41 has also been synthesized, which contains stabilized nanoparticles of between 1 and 3 nm in size. This latter system shows a similar activity to IrCl3 ? xH2O and complexes 4 and 5 . Mechanistic insights were obtained by in situ X‐ray absorption spectroscopy and scanning transmission electron microscopy.  相似文献   

11.
The pyrochlore solid solution (Na0.33Ce0.67)2(Ir1?xRux)2O7 (0≤x≤1), containing B‐site RuIV and IrIV is prepared by hydrothermal synthesis and used as a catalyst layer for electrochemical oxygen evolution from water at pH<7. The materials have atomically mixed Ru and Ir and their nanocrystalline form allows effective fabrication of electrode coatings with improved charge densities over a typical (Ru,Ir)O2 catalyst. An in situ study of the catalyst layers using XANES spectroscopy at the Ir LIII and Ru K edges shows that both Ru and Ir participate in redox chemistry at oxygen evolution conditions and that Ru is more active than Ir, being oxidized by almost one oxidation state at maximum applied potential, with no evidence for ruthenate or iridate in +6 or higher oxidation states.  相似文献   

12.
As promising supports, reducible metal oxides afford strong metal–support interactions to achieve efficient catalysis, which relies on their band states and surface stoichiometry. In this study, in situ and controlled hydrogen doping (H doping) by means of H2 spillover was employed to engineer the metal–support interactions in hydrogenated MoOx‐supported Ir (Ir/H?MoOx) catalysts and thus promote furfural hydrogenation to furfuryl alcohol. By easily varying the reduction temperature, the resulting H doping in a controlled manner tailors low‐valence Mo species (Mo5+ and Mo4+) on H?MoOx supports, thereby promoting charge redistribution on Ir and H?MoOx interfaces. This further leads to clear differences in H2 chemisorption on Ir, which illustrates its potential for catalytic hydrogenation. As expected, the optimal Ir/H?MoOx with controlled H doping afforded high activity (turnover frequency: 4.62 min?1) and selectivity (>99 %) in furfural hydrogenation under mild conditions (T=30 °C, P =2 MPa), which means it performs among the best of current catalysts.  相似文献   

13.
The design of a three-dimensional structure for an Ir-based catalyst offers a great opportunity to improve the electrocatalytic performance and maximize the use of the precious metal. Herein, a novel wet chemical strategy is reported for the synthesis of an IrRuMn catalyst with a sphere structure and porous features. In the synthetic process, the combined use of citric acid and formamide is requisite for the formation of the sphere structure. This method leads to a favorable 3D IrRuMn sphere structure with many fully exposed active sites. Furthermore, an alloying noble metal, such as Ir or Ru, with the transition metal leads to enhanced oxygen evolution reaction (OER) activity. The doping of a transition metal, such as Mn, is an interesting example, because it exhibits stability and activity in both acidic and alkaline media. For the OER, the IrRuMn sphere catalyst exhibits an overpotential of 260 mV at a current density of 10 mA cm−2 in strongly acidic 0.1 m HClO4, which is superior to that of a commercial IrO2/C catalyst. This approach provides a novel way to synthesize an Ir-based multimetallic spherical electrocatalyst, which exhibits exceptional efficiency for the acidic OER. It will pave the way for new approaches to the practical utilization of PEM electrolyzers.  相似文献   

14.
Endowing transition‐metal oxide electrocatalysts with high water oxidation activity is greatly desired for production of clean and sustainable chemical fuels. Here, we present an atomically thin cobalt oxyhydroxide (γ‐CoOOH) nanosheet as an efficient electrocatalyst for water oxidation. The 1.4 nm thick γ‐CoOOH nanosheet electrocatalyst can effectively oxidize water with extraordinarily large mass activities of 66.6 A g?1, 20 times higher than that of γ‐CoOOH bulk and 2.4 times higher than that of the benchmarking IrO2 electrocatalyst. Experimental characterizations and first‐principles calculations provide solid evidence to the half‐metallic nature of the as‐prepared nanosheets with local structure distortion of the surface CoO6?x octahedron. This greatly enhances the electrophilicity of H2O and facilitates the interfacial electron transfer between Co ions and adsorbed ‐OOH species to form O2, resulting in the high electrocatalytic activity of layered CoOOH for water oxidation.  相似文献   

15.
Theoretical calculations utilizing relativistic ZORA Hamiltonian point to the conceivable existence of an IrNO3 molecule in C3v geometry. This minimum is shown to correspond to genuine nonavalent iridium nitride trioxide, which is a neutral analogue of cationic [IrO4]+ species detected recently. Despite the presence of nitride anion, the molecule is protected by substantial barriers exceeding 200 kJ mol−1 against transformations leading, for example, to global minimum (O=)2Ir−NO, which contains metal at a lower formal oxidation state.  相似文献   

16.
For the first time, we synthesize solid‐solution alloy nanoparticles of Ir and Cu with a size of ca. 2 nm, despite Ir and Cu being immiscible in the bulk up to their melting over the whole composition range. We performed a systematic characterization on the nature of the IrxCu1?x solid‐solution alloys using powder X‐ray diffraction, scanning transmission electron microscopy coupled with energy‐dispersive X‐ray spectroscopy and X‐ray photoelectron spectroscopy. The results showed that the IrxCu1?x alloys had a face‐centered‐cubic structure; charge transfer from Cu to Ir occurred in the alloy nanoparticles, as the core‐level Ir 4f peaks shifted to lower energy region with the increase in Cu content. Furthermore, we observed that the alloying of Ir with Cu enhanced both the electrocatalytic oxygen evolution and oxygen reduction reactions. The enhanced activities could be attributed to the electronic interaction between Ir and Cu arising from the alloying effect at atomic‐level.  相似文献   

17.
For the first time iridium oxide (IrO2) nanotubes are synthesized by electrodeposition in a polycarbonate (PC) template. Potential cycling (90 cycles) between 0.0 and 0.9 V is used for the preparation of IrOx nanotubes onto the PC template with a pore diameter of 100 nm. Field‐emission scanning electron microscopy (FESEM) images show, that IrO2 nanotubes with uniform diameters of 110±10 nm and an estimated length of 1–3 µm are formed. The electrochemical properties and the electrocatalytic activity of a glassy carbon‐IrOx nanotube modified electrode toward Cr3+ and As3+ oxidation are investigated. Finally, the modified electrode is used for micromolar detection of the proposed analytes using differential pulse voltammetry.  相似文献   

18.
Due to the robust oxidation conditions in strong acid oxygen evolution reaction (OER), developing an OER electrocatalyst with high efficiency remains challenging in polymer electrolyte membrane (PEM) water electrolyzer. Recent theoretical research suggested that reducing the coordination number of Ir−O is feasible to reduce the energy barrier of the rate-determination step, potentially accelerating the OER. Inspired by this, we experimentally verified the Ir−O coordination number's role at model catalysts, then synthesized low-coordinated IrOx nanoparticles toward a durable PEM water electrolyzer. We first conducted model studies on commercial rutile-IrO2 using plasma-based defect engineering. The combined in situ X-ray absorption spectroscopy (XAS) analysis and computational studies clarify why the decreased coordination numbers increase catalytic activity. Next, under the model studies’ guidelines, we explored a low-coordinated Ir-based catalyst with a lower overpotential of 231 mV@10 mA cm−2 accompanied by long durability (100 h) in an acidic OER. Finally, the assembled PEM water electrolyzer delivers a low voltage (1.72 V@1 A cm−2) as well as excellent stability exceeding 1200 h (@1 A cm−2) without obvious decay. This work provides a unique insight into the role of coordination numbers, paving the way for designing Ir-based catalysts for PEM water electrolyzers.  相似文献   

19.
向担载镍基催化剂NiMgAl中添加助剂(Co,Ir或Pt)制备了三种助剂促进型催化剂,通过氢气程序升温还原(H2-TPR),CO2/CH4程序升温表面反应(CO2/CH4-TPSR)和CO2程序升温脱附(CO2-TPD)等方法对催化剂进行表征.助剂对催化剂性能的影响通过甲烷干重整实验进行评价.添加少量的Pt或Ir助剂可以降低Ni活性组分的还原温度和提高反应性能.添加助剂的样品与原始NiMgAl催化剂相比能够降低反应的活化能,添加Co或Ir助剂的催化剂与NiMgAl催化剂相比活化能有了明显的降低.NiMgAl催化剂的活化能为51.8 kJ·mol-1,添加Pt助剂的NiPtMgAl催化剂活化能降至26.4 kJ·mol-1.NiMgAl催化剂中添加Pt助剂制备的催化剂具有较好的催化活性和较低的活化能.CH4-TPSR和CO2-TPSR结果表明添加Pt助剂可以在更低的温度下(与NiMgAl催化剂相比)提高CH4的活化能力,并在催化剂表面形成更多的碳物种.CO2-TPD结果显示,添加助剂的催化剂与NiMgAl样品相比在反应温度区间内增加了CO2的吸附/脱附量.  相似文献   

20.
An aerosol‐spray‐assisted approach (ASAA) is proposed and confirmed as a precisely controllable and continuous method to fabricate amorphous mixed metal oxides for electrochemical water splitting. The proportion of metal elements can be accurately controlled to within (5±5) %. The products can be sustainably obtained, which is highly suitable for industrial applications. ASAA was used to show that Fe6Ni10Ox is the best catalyst among the investigated Fe‐Ni‐Ox series with an overpotential of as low as 0.286 V (10 mA cm?2) and a Tafel slope of 48 mV/decade for the electrochemical oxygen evolution reaction. Therefore, this work contributes a versatile, continuous, and reliable way to produce and optimize amorphous metal oxide catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号