首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
无机纳米晶的形貌调控及生长机理研究   总被引:6,自引:0,他引:6  
形貌及尺寸规整可控的纳米晶体的合成是目前十分引人注目的纳米材料研究领域.制备合成中的形貌调控及其功能化是这些纳米材料能够得到应用的关键问题.研究者们希望在纳米晶的任一阶段均能实现控制并在期望的阶段停止,从而得到尺寸、形态、结构及组成确定的纳米晶体.本文综述了近年来无机纳米晶体的典型合成路径,深入探讨了纳米晶在成核、生长及熟化阶段的控制原理,研究了液相合成纳米材料过程中晶体结构与生长行为的相关性问题,并总结了几类具有代表性的低维、多维纳米晶体的形成规律和生长机理.探索纳米粒子的调控合成对于纳米材料的规模化生产及应用具有重要的理论价值和指导意义.  相似文献   

2.
The nucleation and growth of colloidal CdSe nanocrystals with a variety of elongated shapes were explored in detail. The critical size nuclei for the system were magic sized nanoclusters, which possessed a sharp and dominated absorption peak at 349 nm. The formation of the unique magic sized nuclei in a broad monomer concentration range was not expected by the classic nucleation theory. We propose that this was a result of the extremely high chemical potential environment, that is, very high monomer concentrations in the solution, required for the growth of those elongated nanocrystals. The shape, size, and size/shape distributions of the resulting nanocrystals were all determined by two related factors, the magic sized nuclei and the concentration of the remaining monomers after the initial nucleation stage. Without any size sorting, nearly monodisperse CdSe quantum structures with different shapes were reproducibly synthesized by using the alternative cadmium precursors, cadmium-phosphonic acid complexes. A reasonably large excess of the cadmium precursor, which is less reactive than the Se precursor, was found beneficial for the system to reach the desired balance between nucleation and growth. The shape evolution and growth kinetics of these elongated nanocrystals were consistent with the diffusion-controlled model proposed previously. The branched nanocrystals had to grow at very high monomer concentrations because the multiple growth centers at the end of each branch must be fed with a very high diffusion flux to keep all branches in the 1D-growth mode. The rice-shaped nanocrystals were found as special products of the 3D-growth stage. The growth of the nanocrystals in the 1D-growth stage was proven to be not unidirectional after the length of the nanocrystals reached a certain threshold. Experimental results indicate that coordinating solvents and two ligands with distinguishable coordinating abilities are both not intrinsic requirements for the growth of elongated CdSe nanocrystals.  相似文献   

3.
A simple effective strategy was developed by using thermoreversible polymer hydrogels as space-confining nanoreactors to control zeolite nucleation and growth. In particular, the synthesis of zeolite 4A nanocrystals 20-180 nm in size and zeolite X nanocrystals 10-100 nm in size from template-free precursor solution was demonstrated. The synthesized zeolite nanocrystals exhibit good dispersibility, as evidenced by dynamic light-scattering measurements.  相似文献   

4.
In this study, we demonstrate that mixed reverse micelles are good candidates to be used as nanoreactors for formation of shape-controlled high-quality colloidal nanocrystals and nanowires under mild conditions. Manipulation of the rate of nucleation and subsequent growth of the Au in the mixed reverse micelles induce drastic changes in the particle shape and structure. Here we demonstrate that control of the nucleation and growth kinetics of the Au in the mixed reverse micelles can be used to vary the shapes of the resulting particles from a nearly spherical morphology to cylinders, trigons and cubics. The characterization of the resultant particles, the effects of synthesis conditions (such as concentration of NaCl, addition of glycerol, and reaction temperature) on particle sizes, particle size distribution, and shape of particle formation have been investigated. This study will help us to understand the chemical control synthesis of crystal growth processes at the atomic level.  相似文献   

5.
Synthesis of monodisperse spherical nanocrystals   总被引:2,自引:0,他引:2  
Much progress has been made over the past ten years on the synthesis of monodisperse spherical nanocrystals. Mechanistic studies have shown that monodisperse nanocrystals are produced when the burst of nucleation that enables separation of the nucleation and growth processes is combined with the subsequent diffusion-controlled growth process through which the crystal size is determined. Several chemical methods have been used to synthesize uniform nanocrystals of metals, metal oxides, and metal chalcogenides. Monodisperse nanocrystals of CdSe, Co, and other materials have been generated in surfactant solution by nucleation induced at high temperature, and subsequent aging and size selection. Monodisperse nanocrystals of many metals and metal oxides, including magnetic ferrites, have been synthesized directly by thermal decomposition of metal-surfactant complexes prepared from the metal precursors and surfactants. Nonhydrolytic sol-gel reactions have been used to synthesize various transition-metal-oxide nanocrystals. Monodisperse gold nanocrystals have been obtained from polydisperse samples by digestive-ripening processes. Uniform-sized nanocrystals of gold, silver, platinum, and palladium have been synthesized by polyol processes in which metal salts are reduced by alcohols in the presence of appropriate surfactants.  相似文献   

6.
The first comprehensive study on the kinetics of nanocrystal growth in a hot amphiphile medium is presented. An example is given with CdSe semiconductor nanocrystals grown after the injection of precursor (a mixture of Cd- and Se-reagents) in concentrated tri-octylphosphine oxide matrix (heated to more than 300 degrees C). The particle size distribution is reconstructed as a function of time from the absorption and photoluminescence spectra collected during the synthesis process. For this purpose a new expression is used relating the exciton energy due to quantum confinement with the nanocrystal radius. The growth kinetics is considered as a two-stage process in order to describe the time variation of nanoparticle size. During the first stage, called reaction-limited growth, the size of initial nucleus rapidly increases due to a sort of surface reaction exhausting the precursor in the nanoparticle vicinity. The growth in such conditions favors also a remarkable narrowing of the size distribution. The nanocrystal develops further on account of a slow precursor transfer from a distant space driven by the concentration gradient--classical diffusion-limited growth. The width of size distribution also increases proportional to the average particle size. Any growth will stop after the precursor concentration reaches a minimum value defining the limit for the final nanocrystal size in a batch. Solving the kinetic equations for the growth rate in each case of kinetics derives analytical expressions for the mean radius and variance of size distribution. Then the respective expressions are matched in a uniform solution valid during the entire synthesis. The theoretical model is in a good quantitative agreement with the experimental data for independent syntheses. Important characteristic scales of the processes (time-constant and length) and microscopic parameters of the reacting system (interfacial energy and reaction rate constant) are estimated from the data. It turns out that the fast reaction-limited growth is important to obtain well-defined nanocrystals of high optical quality by using less energy, time and consumable. However, to make them reproducibly uniform one should control also the ultra-fast nucleation process preceding the nanocrystal growth, which is still unknown. Nevertheless, our current findings allow the conceptual design of a new continuos-flow reactor for the manufacturing of a large amount of uniform nanocrystals.  相似文献   

7.
Dai Q  Li D  Chen H  Kan S  Li H  Gao S  Hou Y  Liu B  Zou G 《The journal of physical chemistry. B》2006,110(33):16508-16513
The addition of a secondary ligand, trioctylphosphine oxide, in the synthesis of cadmium selenide nanocrystals performed in a system with oleic acid as the primary ligand and octadecene as the noncoordinating solvent gives rise to the improvement of nanocrystal size distribution. This phenomenon, which is more significant in the nucleation process than in the growth process, demonstrates that the existence of trioctylphosphine oxide allows for superior nucleation control and permits the facile and reproducible production of extremely small CdSe nanocrystals with narrow size distribution. A systematic study of the nanocrystal formation processes shows that the well-established colloidal nanocrystal growth mechanism, in which nucleation is followed by focusing of size distribution and ended with defocusing of size distribution, cannot be applied to our reactions. Instead, we observed an exceptional type of growth mechanism in which, after nucleation, clear defocusing instead of focusing follows; then slight focusing occurs.  相似文献   

8.
Nanocrystals are fundamental to modern science and technology. Mastery over the shape of a nanocrystal enables control of its properties and enhancement of its usefulness for a given application. Our aim is to present a comprehensive review of current research activities that center on the shape‐controlled synthesis of metal nanocrystals. We begin with a brief introduction to nucleation and growth within the context of metal nanocrystal synthesis, followed by a discussion of the possible shapes that a metal nanocrystal might take under different conditions. We then focus on a variety of experimental parameters that have been explored to manipulate the nucleation and growth of metal nanocrystals in solution‐phase syntheses in an effort to generate specific shapes. We then elaborate on these approaches by selecting examples in which there is already reasonable understanding for the observed shape control or at least the protocols have proven to be reproducible and controllable. Finally, we highlight a number of applications that have been enabled and/or enhanced by the shape‐controlled synthesis of metal nanocrystals. We conclude this article with personal perspectives on the directions toward which future research in this field might take.  相似文献   

9.
In this review we present the applications of phosphonic acids in high-temperature colloidal synthesis of cadmium chalcogenide quantum dots and anisotropic nanocrystals. The influence of these acids on the processes of nucleation and growth, particle shape and size, phase composition and luminescent properties is considered. It is shown that phosphonic acids can significantly increase luminescence quantum yield and time stability.  相似文献   

10.
This review highlights work from the authors’ laboratory on the recent development of seed-mediated growth method for noble metal nanocrystals. The seed-mediated growth method has become one of the most efficient and versatile methods for synthe-sizing high-quality noble metal nanocrystals. The seed-mediated growth method can separate the nucleation and growth stages of metal nanocrystals, and thus provide better control over the size, size distribution, and crystallographic evolution of metal nanocrystals. Because of its high controllability, the seed-mediated growth method is especially promising in providing mechanistic insights into the growth mechanisms of noble metal nanocrystals. In this review, the thermodynamic and kinetic parameters for the nucleation and growth of noble metal nanocrystals are systematically summarized. Mechanistic understanding of these parameters is provided. These studies provide useful guidelines for the rational design and synthesis of novel noble metal nanocrystals with high quality.  相似文献   

11.
A comprehensive study of iron oxide nanocrystal growth through non-hydrolitic, surfactant-mediated thermal reaction of iron pentacarbonyl and an oxidizer has been conducted, which includes size control, anisotropic shape evolution, and crystallographic phase transition of monodisperse iron oxide colloidal nanocrystals. The reaction was monitored via in situ UV-vis spectroscopy, taking advantage of the color change accompanying the iron oxide colloid formation, allowing measurement of the induction time for nucleation. Features of the synthesis such as the size control and reproducibility are related to the occurrence of the observed delayed nucleation process. As a separate source of iron and oxygen is adopted, phase control could also be achieved by sequential injections of oxidizer.  相似文献   

12.
This paper reports that gas bubbles can be used to tailor the kinetics of the nucleation and growth of inorganic-nanocrystals in a colloidal synthesis. We conducted a mechanistic study of the synthesis of colloidal iron oxide nanocrystals using gas bubbles generated by boiling solvents or artificial Ar bubbling. We identified that bubbling effects take place through absorbing local latent heat released from the exothermic reactions involved in the nucleation and growth of iron oxide nanocrystals. Our results show that gas bubbles display a stronger effect on the nucleation of iron oxide nanocrystals than on their growth. These results indicate that the nucleation and growth of iron oxide nanocrystals may rely on different types of chemical reactions between the iron-oleate decomposition products: the nucleation relies on the strongly exothermic, multiple-bond formation reactions, whereas the growth of iron oxide nanocrystals may primarily depend upon single-bond formation reactions. The identification of exothermic reactions is further consistent with our results in the synthesis of iron oxide nanocrystals with boiling solvents at reaction temperatures ranging from 290 to 365 °C, by which we determined the reaction enthalpy in the nucleation of iron oxide nanocrystals to be -142 ± 12 kJ/mol. Moreover, our results suggest that a prerequisite for effectively suppressing secondary nucleation in a colloidal synthesis is that the primary nucleation must produce a critical amount of nuclei, and this finding is important for a priori design of colloidal synthesis of monodispersed nanocrystals in general.  相似文献   

13.
Formation of nearly monodiperse MnO nanocrystals by simple heating of Mn stearate in octadecene was studied systematically and quantitatively as a model for non-injection synthesis of nanocrystals. For controlling the shape of the nanocrystals, that is, rice, rods, peanuts, needles, and dots, either an activation reagent (ocadecanol) or an inhibitor (stearic acid) might be added prior to heating. The quantitative results of this typical non-injection system reveal that the formation of nearly monodisperse nanocrystals did not follow the well-known "focusing of size distribution" mechanism. A new growth mechanism, self-focusing enabled by inter-particle diffusion, is proposed. Different from the traditional "focusing of size distribution", self-focusing not only affects the growth process of the nanocrystals, but may also play a role in controlling nucleation. Because of the simplicity of the reaction system, it was possible to also identify the chemical reactions associated with the growth and ripening of MnO nanocrystals with a variety of shapes. Through a recycling reaction path, water was identified as a decisive component in determining the kinetics for both growth and ripening in this system, although the reaction occurred at around 300 degrees C.  相似文献   

14.
Zhang XL  Kang YS 《Inorganic chemistry》2006,45(10):4186-4190
A novel route to the rational fabrication of narrow one-dimensional ZnO nanocrystals with perpendicular side facets is demonstrated in alcoholic solutions. The synthesis involves no-template or no-substrate solution method, which still allows the oriented growth of ZnO nanostructures at large-scale, low-cost, and moderate temperatures. The management consists of monitoring of the nucleation, growth, and aging processes by means of chemical and solvent control of the interfacial free energy. It enables the control of the size of nano-, meso-, and microcrystallites with various aspects from cubes to rods, wires, and belts.  相似文献   

15.
Lanthanide doping not only works as sensitizer and activator, but also plays an important role to facilitate the growth of nanocrystal and to control the size, shape, and property of nanocrystals. Here, reported was the synthesis of monodisperse Ba(2)LaF(7) nanocrystals with the size of sub-10nm through a solvothermal method. We found the dopants of Ho(3+), Er(3+), or Yb(3+) facilitated the growth of Ba(2)LaF(7) nanocrystals obviously to a certain size within a shorter reaction time. Similar phenomenon can also be observed in the synthesis of LaF(3) nanocrystals. We find that Ln(3+) (e.g., Ho(3+), Er(3+), or Yb(3+)) with smaller radius can reduce the nucleation energy and lead to heterogeneous nucleation, which favors the growth of Ba(2)LaF(7) nanocrystals obviously. In addition, intense upconversion emission can be observed from Ln(3+)-doped Ba(2)LaF(7) nanocrystals under the 980 nm laser excitation, providing great potential application in biological imaging. Especially, Ba(2)LaF(7):Yb/Er (20/1 mol%) nanocrystals present more intense upconversion emission than α-NaYF(4):Yb/Er (20/1 mol%) nanocrystals under the same conditions.  相似文献   

16.
High quality CoPt(3) nanocrystals were synthesized via simultaneous reduction of platinum acetylacetonate and thermodecomposition of cobalt carbonyl in the presence of 1-adamantanecarboxylic acid and hexadecylamine as stabilizing agents. The high flexibility and reproducibility of the synthesis allows us to consider CoPt(3) nanocrystals as a model system for the hot organometallic synthesis of metal nanoparticles. Different experimental conditions (reaction temperature, concentration of stabilizing agents, ratio between cobalt and platinum precursors, etc.) have been investigated to reveal the processes governing the formation of the metal alloy nanocrystals. It was found that CoPt(3) nanocrystals nucleate and grow up to their final size at an early stage of the synthesis with no Ostwald ripening observed upon further heating. In this case, the nanocrystal size can be controlled only via proper balance between the rates for nucleation and for growth from the molecular precursors. Thus, the size of CoPt(3) nanocrystals can be precisely tuned from approximately 3 nm up to approximately 18 nm in a predictable and reproducible way. The mechanism of homogeneous nucleation, evolution of the nanocrystal ensemble in the absence of Ostwald ripening, nanocrystal faceting, and size-dependent magnetic properties are investigated and discussed on the example of CoPt(3) magnetic alloy nanocrystals. The developed approach was found to be applicable to other systems, e.g., FePt and CoPd(2) magnetic alloy nanocrystals.  相似文献   

17.
Yang H  Luan W  Tu ST  Wang ZM 《Lab on a chip》2008,8(3):451-455
By utilizing the symmetrical temperature distribution in a tube furnace chamber, a capillary microreactor was designed with the microchannel passing two well-controlled, stable temperatures in steep temperature gradients. The two-temperature microreator, first developed and implemented by this research team, provides an opportunity to separate the nucleation and growth of semiconductor nanocrystals, leading to better control of nucleation and growth kinetics. For the synthesis of CdSe nanocrystals as a model system, we demonstrated the improved size uniformity achieved by the two-temperature approach, confirming the success of the use of high temperature to burst nucleation and low temperature to promote growth.  相似文献   

18.
Colloidal synthesis of metal nanocrystals with controlled shapes and internal structures calls for a tight control over both the nucleation and growth processes. Here we report a method for the facile synthesis of Pt right bipyramids (RBPs) by separating nucleation from growth and controlling the nucleation step in a continuous flow reactor. Specifically, homogeneous nucleation was thermally triggered by introducing the reaction solution into a tubular flow reactor held at an elevated temperature to generate singly-twinned seeds. At a lower temperature, the singly-twinned seeds were protected from oxidative etching to allow their slow growth and evolution into RBPs while additional nucleation of undesired seeds could be largely suppressed to ensure RBPs as the main product. Further investigation indicated that the internal structure and growth pattern of the seeds were determined by the temperatures used for the nucleation and growth steps, respectively. The Br ions involved in the synthesis also played a critical role in the generation of RBPs by serving as a capping agent for the Pt{100} facets while regulating the reduction kinetics through coordination with the Pt(IV) ions.  相似文献   

19.
A surfactant-assisted nonaqueous strategy, relying on high-temperature aminolysis of titanium carboxylate complexes, has been developed to access anisotropically shaped TiO2 nanocrystals selectively trapped in the metastable brookite phase. Judicious temporal manipulation of precursor supply to the reaction mixture enables systematic tuning of the nanostructure geometric features over an exceptionally wide dimensional range (30-200 nm). Such degree of control is rationalized within the frame of a self-regulated phase-changing seed-catalyzed mechanism, in which homogeneous nucleation, on one side, and heterogeneous nucleation/growth processes, on the other side, are properly balanced while switching from the anatase to the brookite structures, respectively, in a continuous unidirectional crystal development regime. The time variation of the chemical potential for the monomer species in the solution, the size dependence of thermodynamic structural stability of the involved titania polymorphs, and the reduced activation barrier for brookite nucleation onto initially formed anatase seeds play decisive roles in the crystal-phase- and shape-tailored growth of titania nanostructures by the present approach.  相似文献   

20.
In this letter, we report a quantitative analysis of how a Pt(Ⅱ) precursor is reduced to atoms at different temperatures for the formation of Pt nanocrystals with different morphologies and sizes. Our results suggest that in the early stage of a synthesis, the Pt(Ⅱ) precursor is reduced to atoms exclusively in the solution phase, followed by homogeneous nucleation to generate nuclei and then seeds. At a relatively low reaction temperature such as 22℃, the growth of the seeds is dominated by autocatalytic surface reduction that involves the adsorption and then reduction of the Pt(Ⅱ) precursor on the surface of the just-formed seeds. This particular growth pathway results in relatively large assemblies of Pt nanocrystals. When the reaction temperature is increased to 100℃, the dominant reduction pathway will be switched from surface to solution phase, producing much smaller assemblies of Pt nanocrystals. Our results also demonstrate that a similar trend applies to the seed-mediated growth of Pt nanocrystals in the presence of Pd nanocubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号