首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, a polydopamine (PDA)-modified hollow fiber-immobilized xanthine oxidase (XOD) was prepared for screening potential XOD inhibitors from flavonoids. Several parameters for the preparation of PDA-modified hollow fiber-immobilized XOD, including the dopamine concentration, modification time, XOD concentration and immobilization time, were optimized. The results show that the optimal conditions for immobilized XOD activity were a dopamine concentration of 2.0 mg/mL in 10.0 mM Tris-HCl buffer (pH 8.5), a modification time of 3.0 h, an XOD concentration of 1000 μg/mL in 10.0 mM phosphate buffer (pH 7.5) and an immobilization time of 3.0 h. Subsequently, the enzymatic reaction conditions such as the pH value and temperature were investigated, and the enzyme kinetics and inhibition parameters were determined. The results indicate that the optimal pH value (7.5) and temperature (37 °C) of the PDA-modified hollow fiber-immobilized XOD were consistent with the free enzyme. Moreover, the PDA-modified hollow fiber-immobilized XOD could still maintain above 50% of its initial immobilized enzyme activity after seven consecutive cycles. The Michaelis–Menten constant (Km) and the half-maximal inhibitory concentration (IC50) of allopurinol on the immobilized XOD were determined as 0.25 mM and 23.2 μM, respectively. Furthermore, the PDA-modified hollow fiber-immobilized XOD was successfully applied to evaluate the inhibitory activity of eight flavonoids. Quercetin, apigenin, puerarin and epigallocatechin showed a good inhibition effect, and their percentages of inhibition were (79.86 ± 3.50)%, (80.98 ± 0.64)%, (61.15 ± 6.26)% and (54.92 ± 0.41)%, respectively. Finally, molecular docking analysis further verified that these four active compounds could bind to the amino acid residues in the XOD active site. In summary, the PDA-modified hollow fiber-immobilized XOD is an efficient method for the primary screening of XOD inhibitors from natural products.  相似文献   

2.
《Electrophoresis》2017,38(3-4):486-493
A new method for screening tyrosinase inhibitors from traditional Chinese medicines (TCMs) was successfully developed by capillary electrophoresis with reliable online immobilized enzyme microreactor (IMER). In addition, molecular docking study has been used for supporting inhibition interaction between enzyme and inhibitors. The IMER of tyrosinase was constructed at the outlet of the capillary by using glutaraldehyde as cross‐linker. The parameters including enzyme reaction, separation of the substrate and product, and the performance of immobilized tyrosinase were investigated systematically. Because of using short‐end injection procedure, the product and substrate were effectively separated within 2 min. The immobilized tyrosinase could remain 80% active for 30 days at 4°C. The Michaelis–Menten constant of tyrosinase was determined as 1.78 mM. Kojic acid, a known tyrosinase inhibitor, was used as a model compound for the validation of the inhibitors screening method. The half‐maximal inhibitory concentration of kojic acid was 5.55 μM. The method was successfully applied for screening tyrosinase inhibitors from 15 compounds of TCM. Four compounds including quercetin, kaempferol, bavachinin, and bakuchiol were found having inhibitory potentials. The results obtained in this work were supported by molecular docking study.  相似文献   

3.
This study is to give a brief introduction of immobilized enzyme reactor (IMER) in on-line LC and its application in drug screening. The literature of immobilization techniques, immobilization supports and determination of immobilized enzyme activity were reviewed; the application in the drug screening is briefly introduced. It was found that IMER increased the enzymatic stabilization, strikingly shortens reaction time and can be used to perform fast screening of enzyme inhibitor. IMER has wide fields in drug screening application.  相似文献   

4.
A trypsin immobilized enzyme microreactor was successfully prepared in capillary for studying enzyme kinetics of trypsin and online screening of trypsin inhibitors from traditional Chinese medicine through capillary electrophoresis. Trypsin was immobilized on the inner wall at the inlet of the capillary treated with polydopamine. The rest of the capillary was used as a separation channel. The parameters including the separation efficiency and the activity of immobilized trypsin were comprehensively evaluated. Under the optimal conditions, online screening of trypsin inhibitors each time can be carried out within 6 min. The Michaelis–Menten constant of immobilized trypsin was calculated to be 0.50 mM, which indicated high affinity of the immobilized trypsin for the substrate. The half‐maximal inhibitory concentration of known inhibitor of benzamidine hydrochloride hydrate as a model inhibitor was 13.32 mM. The proposed method was successfully applied to screen trypsin inhibitors from 15 compounds of traditional Chinese medicine. It has been found that baicalin showed inhibitory potency. Molecular docking study well supported the experimental result by exhibiting molecular interaction between enzyme and inhibitors.  相似文献   

5.
In this study, a capillary electrophoresis‐based online immobilized enzyme microreactor was developed for evaluating the inhibitory activity of green tea catechins and tea polyphenol extracts on trypsin. The immobilized trypsin activity and other kinetic parameters were evaluated by measuring the peak area of the hydrolyzate of chromogenic substrate S‐2765. The results indicated that the activity of the immobilized trypsin remained approximately 90.0% of the initial immobilized enzyme activity after 30 runs. The value of Michaelis–Menten constant (Km) was (0.47 ± 0.08) mM, and the half‐maximal inhibitory concentration (IC50) and inhibition constant (Ki) of benzamidine were measured as 3.34 and 3.00 mM, respectively. Then, the inhibitory activity of four main catechins (epicatechin, epigallocatechin, epicatechin gallate, and epigallocatechin gallate) and three tea polyphenol extracts (green tea, white tea, and black tea) on trypsin were investigated. The results showed that four catechins and three tea polyphenol extracts had potential trypsin inhibitory activity. In addition, molecular docking results illustrated that epigallocatechin gallate, epicatechin gallate, epicatechin, and epigallocatechin were all located not only in the catalytic cavity, but also in the substrate‐binding pocket of trypsin. These results indicated that the developed method is an effective tool for evaluating inhibitory activity of catechins on trypsin.  相似文献   

6.
A method based on enzyme blocking combined with ultrafiltration liquid chromatography–mass spectrometry (LC–MS) has been developed to identify xanthine oxidase (XOD) inhibitors in the roots of Lindera reflexa Hemsl (LR) and determine their binding positions. Allopurinol and febuxostat, known XOD inhibitors, which occupy different binding positions in XOD, were used as blockers and pre‐incubated with XOD. Then the LR extract was incubated without XOD, and with XOD, allopurinol‐blocked XOD and febuxostat‐blocked XOD before ultrafiltration LC–MS was performed. By comparing the chromatographic profiles of the incubation samples, not only the ligands, but also the binding position of these ligands with XOD could be determined. Finally, three compounds, pinosylvin, pinocembrin and methoxy‐5‐hydroxy‐trans‐stilbene, were identified as potential XOD inhibitors and the binding modes of these three compounds were shown to be similar to those of febuxostat. To verify the XOD inhibitory activity of the screened compounds, the microplate method and molecular docking in silico were used to evaluate the enzyme inhibitory activities and the binding positions with XOD. The results showed that the developed method could screen for XOD ligands in LR extracts and also determine the binding positions of the ligands. To our knowledge, this is the first report of the XOD inhibitory activity of these three compounds.  相似文献   

7.

Purine nucleoside phosphorylase (PNP) catalyzes the phosphorolysis of N-ribosidic bonds of purine nucleosides and deoxynucleosides to the corresponding purine bases and (deoxy)ribosyl-1-phosphate. PNP plays a central role in purine recycling and salvage pathway and has been considered an attractive chemotherapeutic target for several diseases. In this work, PNP from Mycobacterium tuberculosis (MtPNP) was covalently immobilized into fused-silica capillaries. The activity of the produced immobilized enzyme reactor (MtPNP-IMER) was monitored onflow in a multidimensional liquid chromatography system containing the MtPNP-IMER in the first dimension. A C18 analytical column inserted in the second dimension furnished the rapid chromatographic separation of the substrate (inosine) and product (hypoxanthine) from the MtPNP catalyzed reaction, allowing monitoring MtPNP-IMER activity through the direct quantification of hypoxanthine formed. Kinetic studies showed that the KM values (59.19 μmol L?1) for substrates using the immobilized enzyme were consistent with those reported for the free enzyme in solution (40 μmol L?1). To validate the use of the proposed methodology for screening purposes, a fourth-generation immucillin derivative (DI4G), known as a PNP inhibitor, was used as a standard inhibitor. The studies revealed that the immobilized enzyme retained the ability to recognize enzyme inhibitors and the onflow assay allowed the characterization of the inhibitor by determining the IC50 (29.85?±?1.02 nmol L?1), inhibition mechanism and constant (Ki?=?34.8?±?0.2 nmol L?1). The results revealed that the immobilized MtPNP retained its catalytic activity (up to 60%) and the ability to recognize ligands with high stability for up to 10 days. The proposed model has as advantages the automation and the possibility of reusing the same amount of enzyme in several assays.

  相似文献   

8.
The enzyme xanthine oxidase (XOD) has been recognized as a key enzyme causing oxidative injury to tissues by ischemia-reperfusion. For this reason, XOD inhibitor, which effectively suppresses this enzyme, plays an important role in the inhibition of many diseases related to reactive oxygen species (ROS). In order to screen XOD inhibitors rapidly and conveniently, a novel assay using flow injection analysis (FIA) was proposed in the present investigation. To optimize the practical FIA system, we studied the effect of the reagent concentrations and the flow condition on the enzymatic reaction, and then selected the optimum condition as follows: 200-mU/ml XOD concentration, 0.5-mM xanthine concentration, 0.5-ml/min flow rate, and 2-m mixing coil length. Under this condition, a typical XOD inhibitor quercetin was determined in the concentration range 0.1 - 1.5 mM at a sampling frequency of 10 samples/h. Using the optimized FIA method, we determined the XOD inhibitory activity of some food samples: onions, apples and teas, which are the high sources of flavonoids known as the potential XOD inhibitors. Among these samples, tea leaves showed the highest activity, the second was onions and the lowest was apples. Based on the result of the assay, not only quercetin, but also other components in investigated samples, contributed to the XOD inhibitory activity.  相似文献   

9.
In this study, α-glucosidase was successfully immobilized on cellulose filter paper and further applied to screening inhibitors from traditional Chinese medicines combined with capillary electrophoresis analysis. For α-glucosidase immobilization, a cellulose filter paper was used as the carrier and grafted with amino groups by coating chitosan, then α-glucosidase was covalently bonded on the amino-modified carrier via epoxy ring-opening reaction using polyethylene glycol diglycidyl ether as the crosslinker. Several parameters influencing the enzyme immobilization were optimized and the optimal values were enzyme concentration of 4 U/mL, polyethylene glycol diglycidyl ether concentration of 1.25%, chitosan concentration of 7.5 mg/mL, immobilization pH 7.0, crosslinking time of 4 h and immobilization time of 2 h. The immobilized α-glucosidase exhibited good batch-to-batch reproducibility (RSD = 2.1%, n = 5), excellent storage stability (73.5% of its initial activity after being stored at 4°C for 15 days), and reusability (75% of its initial activity after 10 repeated cycles). The Michaelis constant of immobilized α-glucosidase and half-maximal inhibitory concentration of acarbose were calculated to be 1.12 mM and 0.38 μM, respectively. Finally, the immobilized α-glucosidase was used for screening inhibitors from 14 kinds of Traditional Chinese Medicine extracts, and Sanguisorbae Radix showed the strongest inhibitory effect on α-glucosidase.  相似文献   

10.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays an important role in the life cycle of the Trypanosoma cruzi, and an immobilized enzyme reactor (IMER) has been developed for use in the on-line screening for GAPDH inhibitors. An IMER containing human GAPDH has been previously reported; however, these conditions produced a T. cruzi GAPDH-IMER with poor activity and stability. The factors affecting the stability of the human and T. cruzi GAPDHs in the immobilization process and the influence of pH and buffer type on the stability and activity of the IMERs have been investigated. The resulting T. cruzi GAPDH-IMER was coupled to an analytical octyl column, which was used to achieve chromatographic separation of NAD(+) from NADH. The production of NADH stimulated by d-glyceraldehyde-3-phosphate was used to investigate the activity and kinetic parameters of the immobilized T. cruzi GAPDH. The Michaelis-Menten constant (K(m)) values determined for d-glyceraldehyde-3-phosphate and NAD(+) were K(m) = 0.5 +/- 0.05 mM and 0.648 +/- 0.08 mM, respectively, which were consistent with the values obtained using the non-immobilized enzyme.  相似文献   

11.
A recombinant esterase from Lactobacillus plantarum was immobilized on hydrophobic support polypropylene Accurel MP1000 by adsorption. Adsorption efficiency was 83%, and the immobilized protein was 12.4 mg/g of support. Esterase activity was determined using p-nitrophenyl butyrate as substrate, and highest activities were observed at 50 °C for immobilized enzyme and 30 °C for free enzyme extract. Concerning thermal stability, after enzyme incubation at 80 °C for 30 min, immobilized and free enzyme retained 91% and 56% of initial activity, respectively. Immobilized enzyme presented lower V max and higher K m than free enzyme. Protein was not released from the support, and esterase activity increased after 3 cycles of reuse.  相似文献   

12.
An online method based on CE was established to screen α-glucosidase inhibitors from traditional Tibetan medicine extracts. First, the inner wall at the inlet of capillary column was simply and effectively functionalized by dopamine-polyethyleneimine co-deposition method, which combines the adhesion property of dopamine and easy cationization of polyethyleneimine. Then α-glucosidase was rapidly immobilized on the inner wall of the capillary column by electrostatic adsorption. The inter- and intraday repeatability of the peak area of the enzymatic reaction product (p-nitrophenol) in a capillary was evaluated, and RSD% (n = 3) was 0.94% and 1.09%, respectively. Good batch-to-batch reproducibility of the peak area between different capillaries (RSD = 2.1%, n = 5) shows that the preparation method has good reproducibility. The Michaelis–Menten constant of the immobilized α-glucosidase was measured to be 1.18 mM, and the capillary column enzyme reactor retained 85.9% of initial activity after 30 cycles. Finally, it was applied to the screening of enzyme inhibitors in 20 traditional Tibetan medicine extracts. Sixteen medicines with inhibitory activity were screened out, and Rheum australe had the strongest inhibitory effect with an inhibitory rate of 83.3 ± 0.4%. These results showed that this method is effective to find potential enzyme inhibitors.  相似文献   

13.
Initially, a poly (glycidyl methacrylate-co-acrylamide-co-methylenebisacrylamide) monolith was prepared in the 100 μm i.d. capillary, and then was grafted with polyethylenimine (Mw, ∼25,000) for adsorbing Cu2+, followed by chelating trypsin. As a result, efficient digestion for BSA (100 ng/μL) was completed within 50 s via such immobilized enzyme reactor (IMER); yielding 47% sequence coverage by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. Compared with the conventional method for preparing the metal-ion chelated IMER, the regeneration of such IMER can be achieved facilely by the respective 30 min desorption and re-adsorption of trypsin, and 51% sequence coverage was obtained for 50 s BSA digestion after regeneration. BSA down to femtomole was also efficiently digested by the prepared regenerable IMER. Meanwhile, after the consecutive digestion of myoglobin and BSA, there was not any mutual interference for both during MALDI-TOF MS identification, indicating the low nonspecific adsorption of such regenerable IMER. To test the applicability of regenerable IMER for complex sample profiling, proteins (150 ng) extracted from Escherichia coli were digested within 80 s by the regenerable IMER and further analyzed by nanoreversed phase liquid chromatography–electrospray ionization–mass spectrometry successfully, showing its practicability for the high throughput analysis of complex samples.  相似文献   

14.
A combination of electrophoretically mediated microanalysis (EMMA) methodology with a partial filling technique was developed for screening of xanthine oxidase (XOD) inhibitors in substances used in traditional Chinese medicine (TCM). In order to achieve sufficient separation, a micellar electrokinetic chromatography (MEKC) method was employed for the separation. The enzyme activity was determined by the quantification of the peak area of the product, uric acid (UA), at 295 nm. Enzyme inhibition can be read out directly from the reduced peak area of UA in comparison to a reference electropherogram obtained in the absence of any inhibitor. The method was validated using a commercially available XOD inhibitor, 4-aminopyrazolo[3,4-d]pyrimidine, and the IC50 value was determined to be 29.90 ± 0.26 μM. Fifteen natural extracts from TCM were screened, and Cortex Phellodendri (the dried bark of Phellodendron chinense) extract was found to be positive for XOD inhibition.  相似文献   

15.
In recent years, CE-integrated immobilized enzyme reactors (IMERs) for single-enzyme immobilization have attracted considerable attention. However, there has been little research on multienzyme immobilization in CE. Here, we introduce a method for fabricating a CE-integrated IMER, using DNA-directed immobilization to fix glucose oxidase and horseradish peroxidase in the capillary, which had been functionalized with polyamidoamine dendrimer (PAMAM). Owing to the reversibility of DNA hybridization, the reactor is capable of dynamic immobilization. Moreover, by introducing the PAMAM, the loading capacity of the IMER is greatly enhanced, and the PAMAM can spontaneously form complexes with DNA and then contribute to the efficiency and stability of the reactor. After 25 days storage, the prepared IMER ultimately retained approximately 70% of its initial activity. We also used the IMER to detect glucose, and the favorable linearity was obtained over the concentration range of 0.78–12.5 mM, with an LOD of 0.39 mM, demonstrating that the CE-integrated IMER can be applied to actual samples. We believe that this strategy can be extended to other multienzyme immobilization systems, and CE-integrated IMERs are potentially useful in a wide range of biochemical research applications.  相似文献   

16.
Xanthine oxidase (XOD) is a key oxidative enzyme to the pathogenesis of hyperuricemia and certain diseases induced by excessive reactive oxygen species. XOD inhibitors could provide an important therapeutic approach to treat such diseases. A new method using affinity selection-based two-dimensional chromatography coupled with liquid chromatography-mass spectrometry was developed for the online screening of potential XOD inhibitors from Radix Salviae Miltiorrhizae. Based on our previous study, the two-dimensional, turbulent-flow chromatography (TFC) was changed to a mixed-mode anion-exchange/reversed-phase column and one reversed-phase column. The developed method was validated to be selective and sensitive for screening XOD-binding compounds, especially weak acidic ones, in the extracts. Three salvianolic acids were screened from the Radix Salviae Miltiorrhizae extract via the developed method. The XOD inhibitory activities of salvianolic acid C and salvianolic acid A were confirmed, and their inhibitory modes were measured. Salvianolic acid C exhibited potent XOD inhibitory activity with an IC50 of 9.07 μM. This work demonstrated that the developed online, two-dimensional TFC/LC-MS method was effective in discovering the binding affinity of new compounds from natural extracts for target proteins, even at low concentrations.
?  相似文献   

17.
Prolyl hydroxylase domain 2 (PHD2) is a key enzyme regulating the expression of hypoxia inducible factor (HIF). Its inhibitors can improve the expression of HIF and downstream genes, which can treat hypoxia-related diseases. Therefore, the establishment of a reliable PHD2 inhibitors screening method is of great significance for the drug development of hypoxia-related diseases. In this work, an accurate, rapid, and simple screening method for PHD2 inhibitors was introduced by capillary zone electrophoresis (CZE). In order to improve the detection sensitivity, the derivative reaction of α-ketoglutaric acid (α-OG) and 1,2-diaminobenzene (OPD) was used to enhance the UV absorption of α-OG (the substrate in the enzymatic reaction). The CZE method selected 20 mM Na2B4O7 buffer (pH 9.0) as the separation buffer, +25 kV as the separation voltage, 25°C as the cartridge temperature, and 210 nm as the detection wavelength. Under this condition, the analysis of a single sample can be realized within 9 min. Compared with the existing reported methods, the present work can directly screen the PHD2 inhibitory activity of traditional Chinese medicine (TCM) extracts, which is of significance for the target-purification of bioactive individual compounds from TCMs. Under the optimal conditions, the PHD2 inhibitor screening platform was successfully established, and it was found that 70% methanol/water extracts of Astragali Radix and Codonopsis pilosula had good PHD2 inhibitory activity. Furthermore, the present work provides a novel approach for screening the PHD2 inhibitory activity of TCM extracts and the discovery of anti-hypoxia bioactive compounds.  相似文献   

18.
Phenylalanine dehydrogenase (l-PheDH) from Sporosarcina ureae was immobilized on DEAE-cellulose, modified initially with 2-amino-4,6-dichloro-s-triazine followed by hexamethylenediamine and glutaraldehyde. The highest activity of immobilized PheDH was determined as 95.75 U/g support with 56% retained activity. The optimum pH value of immobilized l-PheDH was shifted from pH 10.4 to 11.0. The immobilized l-PheDH showed activity variations close to the maximum value in a wider temperature range of 45–55 °C, whereas it was 40 °C for the native enzyme. The pH and the thermal stability of the immobilized l-PheDH were also better than the native enzyme. At pH 10.4 and 25 °C, K m values of the native and the immobilized l-PheDH were determined as K m Phe = 0.118, 0.063 mM and K m NAD+ = 0.234, 0.128 mM, respectively. Formed NADH at the exit of packed bed reactor column was detected by the flow-injection analysis system. The conversion efficiency of the reactor was found to be 100% in the range of 5–600 μM Phe at 9 mM NAD+ with a total flow rate of 0.1 mL/min. The reactor was used for the analyses of 30 samples each for 3 h per day. The half-life period of the reactor was 15 days.  相似文献   

19.
An electrochemiluminescent (ECL) enzyme biosensor was developed for detection of hypoxanthine based on ECL of 6-(4-methoxyphenyl)-2-methylimidazo[1,2-a]pyrazin-3(7H)-one (MCLA). The xanthine oxidase (XOD) was modified on the heated indium–tin-oxide (ITO) electrode, and the ECL enzyme biosensor was found to be electrode temperatures depend, this was because that both the diffusion and convection of compounds near the electrode surface and the catalytic reaction of immobilized enzyme were affected by the temperature of electrode (Te). In this work, the highest sensitivity was gained when Te was 36 °C. Under the optimum condition, the linear response range of hypoxanthine (HX) was found to be 0.3–27 μmol/L, and the detection limit (defined as the concentration that could be detected at the signal-to-noise ration of 3) was 0.15 μmol/L.  相似文献   

20.
The immobilization conditions and kinetic behaviour of trypsin, covalently immobilized via the 1,4-diisothiocyanatobenzene (DITC) linker onto aminopropylated controlled pore glass (CPG) particles, have been evaluated to establish a rapid and efficient protocol for fabrication of an immobilized enzyme microreactor (IMER) for protein hydrolysis and subsequent peptide mapping. Addition of calcium ions to either the immobilization reaction solution or hydrolysis assay was studied for a synthetic substrate. Activity was slightly higher when immobilization was carried out in the presence of Ca2+ whereas more enzyme could be immobilized in its absence. A protocol requiring less than 3 h was devised to obtain maximal enzymatic activity with the lowest ratio of soluble trypsin to DITC-CPG particles. The resulting immobilized enzyme was found to retain an acceptable percentage (ca. 35%) of its activity after immobilization. The particles were dry-packed into a capillary to make a microscale IMER. Repeatability, reusability and digestion efficiency of the μIMER were investigated for the substrate β-casein using capillary electrophoretic-based peptide mapping. In initial tests, a single device showed reproducible peptide maps for 21 digestions lasting 2 h each, carried out over a period of 2 months. Complete digestion of β-casein could be achieved in a few minutes (86 s residence time in the μIMER followed by a wash step).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号