首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An ordered mesoporous carbon material functionalized with carboxylic acid groups was synthesized. It was characterized by powder X-ray diffraction, transmission electron microscopy, Fourier transform IR spectroscopy and N2 adsorption/desorption. Furthermore, this material was used to modify an electrode surface combined with a hydrophobic ionic liquid. The functionalized ordered mesoporous carbon/ionic liquid gel modified electrode shows excellent electrocatalytic performances for the oxidation of dopamine, uric acid and ascorbic acid. The presence of the ionic liquid promotes the electron transfer. Linear responses for dopamine and uric acid were obtained in the ranges of 0.1 to 500 μM and from 0.1 to 100 μM with detection limits of 4.1 and 2.5 nM (signal-to-noise ratio of 3), respectively, under optimum conditions. A quick and sensitive biosensor based on functionalized ordered mesoporous carbon and an ionic liquid has been developed for the first time for the detection of dopamine and uric acid in the presence of a large amount of ascorbic acid.  相似文献   

2.
《化学:亚洲杂志》2017,12(3):366-371
We report a one‐pot and eco‐friendly synthesis of carbon‐supported cobalt nanoparticles, achieved by carbonization of waste biomass (rice bran) with a cobalt source. The functionalized biomass provides carbon microspheres as excellent catalyst support, forming a unique interface between hydrophobic and hydrophilic groups. The latter, involving hydroxyl and amino groups, can catch much more active cobalt nanoparticles on surface for Fischer–Tropsch synthesis than chemical carbon. The loading amount of cobalt on the final catalyst is much higher than that prepared with a chemical carbon source, such as glucose. The proposed concept of using a functionalized natural carbon source shows great potential compared with conventional carbon sources, and will be meaningful for other fields concerning carbon support, such as heterogeneous catalysis or electrochemical fields.  相似文献   

3.
The direct dissolution of UC, a potential fuel for generation-IV nuclear reactors, in nitric acid can produce organic complexants that may interfere with the consumed fuel reprocessing based on liquid–liquid extraction. This study shows the presence of 17 % of carboxylic and polycarboxylic acids (e.g. benzenepentacarboxylic acid). 25 % of the carbon mass balance seemed to correspond to unfunctionalized polyaromatic compounds with more than 3–4 aromatic rings. Under an active oxidation process, these compounds become smaller and very functionalized polyaromatic compounds. Structures have been proposed for 8 % of the carbon mass balance.  相似文献   

4.
以碳纳米管、介孔碳分子筛和氮掺杂的介孔碳为前驱体,采用全氟磺酸-全氟乙烯共聚物(PTFE)液相沉积方法制备了修饰量相同的三种全氟磺酸功能化碳基固体酸催化剂,利用N2吸附、热重分析(TG)、透射电子显微镜(TEM)、傅里叶红外变换(FTIR)光谱以及电位滴定等方法对材料的结构和酸性进行了表征.考察催化剂对于苯甲醇与苯甲醚Friedel-Crafts (F-C)反应的催化性能.结果表明,前驱体的比表面积越大,与修饰剂的相互作用越强,越有利于修饰剂在前驱体表面的分散,得到的催化剂表面酸量越多,酸催化活性越好.因此,全氟磺酸功能化的氮掺杂介孔碳在F-C反应中表现出最高的活性和稳定性.  相似文献   

5.
《Electroanalysis》2006,18(23):2290-2296
Carbon powder has been functionalized with 2‐methoxy‐4‐nitrophenyl groups by the reduction of 2‐methoxy‐4‐nitrobenzenediazonium‐1,5‐naphthalenedisulfonate salt in presence of hypophosporous acid as a reducing agent. This provides an easy and inexpensive methodology to modify the carbon particle surface. This derivatization is carried out in the presence of 2‐methoxy‐4‐nitrobenzenediazonium 1,5‐naphthalenedisulfonate salt along with the carbon powder and hypophosporous acid. The electrochemical behavior of the resulting 2‐methoxy‐4‐nitrophenyl functionalized carbon powder was characterized by immobilizing it onto basal plane pyrolytic graphite (bppg) electrode and studying its voltammetric behavior. The surface morphology of derivatized carbon powder has been examined by SEM studies which revealed that the size of the functionalized carbon particles are larger than bare carbon particles The effect of pH on peak potentials, scan rate and stability of the functionalized carbon particles has revealed that they are surface bound species.  相似文献   

6.
Covalent and noncovalent chemical methods that use oligomeric lipophilic agents to solubilize silica nanoparticles in heptane and poly(α-olefin) (EPAO) solvents are described. While only modest solubilization efficiencies are seen with an octadecyl group, a variety of terminally functionalized polyisobutylene (PIB) derivatives are more efficient. Both covalent and noncovalent chemistry was found to be effective. Covalent modification solubilized up to 34 wt% of silica nanoparticles (SiNPs) as stable solutions in heptane or PAOs. Noncovalent modification was however more effective, solubilizing up to 70% of SiNPs in heptane or PAOs. The most successful covalent approach used PIB oligomers containing terminal triethoxysilane groups to covalently modify SiNPs. Alternatively, SiNPs that were first functionalized with amine groups could be solubilized in heptane or PAOs with polyisobutylene containing sulfonic acid groups using acid–base chemistry. Studies of these and other solubilization chemistry was also carried out using fluorescent labels, studies that confirmed the gravimetric analyses of the heptane-solubilized SiNPs. Transmission electron microscopy of a PAO solution of these solutions showed that these SiNPs were present as small aggregates dispersed in the PAOs.  相似文献   

7.
An easily dispersible multiwalled carbon nanotube (MWCNT) derivative is prepared, and provides a platform for the synthesis of the phenyl butyric acid methyl ester (PCBM) analog. The carbene addition reaction of MWCNTs makes derivatives that are less soluble in organic solvents; by exploiting this differential solubility, PCBM analogs can be separated from the unreacted functionalized MWCNTs. Our experimental evidences indicate that it is the unique properties of the butyric acid methyl ester moiety that makes the acceptor material perform better in organic photovoltaics (OPVs). Studying the combination of the butyric acid methyl ester moiety and the deagglomerated functionalized MWCNT structures provides us an insight into nanoscale charge transfer and transportation inside the donor–acceptor domain. It is demonstrated that a strong structure–property relationship exists for the functionalized MWCNTs, which enables us to correlate the functionality on the carbon nanostructures with performance in OPVs.  相似文献   

8.
The development of new methods for the facile synthesis of hybrid nanomaterials is of great importance due to their importance in nanotechnology. In this work, we report a new method to deposit Au nanoparticles on the surface of single-walled carbon nanotubes (SWCNTs). Our approach consists of a one pot synthesis in which Au nanoparticles are generated in the presence of a photoreducing agent (Irgacure-2959) and carboxyl or polymer-functionalized SWCNTs (f-SWCNTs). We have observed that when carbon nanotubes are functionalized with polymers containing pendant amino groups, the latter can act as specific nucleation sites for well-dispersed deposition of Au nanoparticles. The surface coverage of the Au nanoparticles can be observed by transmission electron spectroscopy. These observations are compared to that of carboxyl functionalized SWCNTs, in which less surface coverage was observed. The f-SWCNT/Au nanocomposites were also characterized by UV-vis, infrared, and Raman spectroscopy and thermogravimetric analysis (TGA). This facile and effective route can be implemented to deposit gold nanoparticles on other surface-functionalized carbon nanotubes.  相似文献   

9.
In this work, a novel approach of preparing molecularly imprinted film‐derivatized silica monolith materials was developed by a two‐step procedure. The silica monolithic support was first prepared by the sol–gel method with tetramethoxysilane as the precursor. Subsequently, vinyl groups were introduced onto the surface of silica monolith by immobilization of γ‐methacryloxypropyltrimethoxysilane. The prepolymerization mixtures, consisting of methacrylic acid as a functional monomer, ethylene dimethacrylate as a crosslinker, sulfamethazine as a template molecule and an ionic liquid as porogen, were injected into the silica monolith immobilized vinyl groups to form the molecularly imprinted films on the surface of the vinyl functionalized silica monolith. The monolithic materials were characterized by SEM, Fourier transform IR and solid‐state reflection UV spectra. The resulted imprinted materials were evaluated under CEC and HPLC mode. The results indicated that there were enough recognition sites on the surface of the imprinted film‐derivatized monolithic materials for selectively recognizing sulfamethazine from the sulfonamide mixture. Ionic liquids, which was utilized as the porogens, could improve the flow‐through property and the imprinting effect of the molecularly imprinted film‐functionalized silica monolithic materials.  相似文献   

10.
11.
纤维素作为可再生资源,其催化水解得到的平台化合物对缓解能源压力具有重要的意义。 本文以生物质竹子为原料选择700 ℃预碳化、150 ℃磺化得到的固体炭磺酸为基体,负载1-丁基-3-甲基咪唑氯后得到离子液体功能化固体炭磺酸催化剂。 结果表明,催化剂最优条件下水解纤维素得到的总还原糖产率相对于固体炭磺酸提升了15.2%,循环使用后,依然表现出良好的催化性能。  相似文献   

12.
A novel nanostructured conducting polymer (PICA‐MWNTs) is easily prepared by direct electrodeposition of indole‐6‐carboxylic acid (ICA) and carboxylic groups ended multiwalled carbon nanotubes (MWNTs) in acetonitrile in one step. The resulting PICA‐MWNTs composites with larger specific surface area and quite a few functionalized carboxylic acid groups are naturally integrated as a continuous uniform film on the electrode. CdSe quantum dots electrochemiluminescence biosensor with high sensitivity for detection of Ramos cells is fabricated based on PICA‐MWNTs. Coupled with nanoparticle‐amplification technnique, this sensor shows high sensitivity and good selectivity for Ramos cells with a low detection limit of 390 cells mL?1. This result provides an avenue for a simple and sensitive approach for detection of Ramos cells, which may have great potential in clinical applications. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2385–2392  相似文献   

13.
Graphene oxide has been used widely as a starting precursor for applications that cater to the needs of tunable graphene. However, the hydrophilic characteristic limits their application, especially in a hydrophobic condition. Herein, a novel non-covalent surface modification approach towards graphene oxide was conducted via a UV-induced photo-polymerization technique that involves two major routes; a UV-sensitive initiator embedded via pi-pi interactions on the graphene planar rings, and the polymerization of hydrophobic polymeric chains along the surface. The functionalized graphene oxide successfully achieved the desired hydrophobicity as it displayed the characteristic of being readily dissolved in organic solvent. Upon its addition into a polymeric solution and subjected to an electrospinning process,non-woven random nanofibers embedded with graphene oxide sheets were obtained. The prepared polymeric nanofibers were subjected to two-step thermal treatments that eventually converted the polymeric chains into a carbon-rich conductive structure. A unique morphology was observed upon the addition of the functionalized graphene oxide, whereby the sheets were embedded and intercalated within the carbon nanofibers and formed a continuous structure. This reinforcement effectively enhanced the electrochemical performance of the carbon nanofibers by recording a specific capacitance of up to 140.10 F/g at the current density of 1 A/g, which was approximately three folds more than that of pristine nanofibers.It also retained the capacitance up to 96.2% after 1000 vigorous charge/discharge cycles. This functionalization technique opens up a new pathway in tuning the solubility nature of graphene oxide towards the synthesis of a graphene oxide-reinforced polymeric structure.  相似文献   

14.
The combination of sol–gel methodology with rapid prototyping (RP) produces functionalized 3D structures with potential applications in various fields. However, this combination has been little explored. In this paper, we used the sol–gel method to deposit vanadium isopropoxide onto polyamide (PA12) constructed by RP and pretreated with acetic acid, to obtain a functionalized substrate with new thermal, physical, and chemical properties. Vanadium isopropoxide (one, five, or ten layers) was deposited onto the PA12 piece by dip-coating. We characterized the coated PA12 by thermal analyses, X-ray diffraction, and infrared spectroscopy, which revealed that V=O and Si–O–Si groups exist on the PA12 surface. PA12 coating with vanadium isopropoxide enhanced the decomposition temperature. Differential scanning calorimetry revealed increased fusion and decomposition enthalpy as a function of the PA12 coating. Therefore, deposition of vanadium isopropoxide onto PA12 pretreated with acetic acid improves the thermal stability of PA12 prepared by RP.  相似文献   

15.
Phenoxy acid herbicides are widely used herbicides that play an important role in improving the yield and quality of crops. However, some research has shown that this kind of herbicide is poisonous to human and animals. In this study, a rapid and sensitive method was developed for the detection of seven phenoxy acid herbicides in water samples based on magnetic solid‐phase extraction followed by liquid chromatography and tandem mass spectrometry. Magnetic amino‐functionalized multiwalled carbon nanotubes were prepared by mixing bare magnetic Fe3O4 nanoparticles with commercial amino‐functionalized multiwalled carbon nanotubes in water. Then the amino‐functionalized multiwalled carbon nanotubes were used to enrich phenoxy acid herbicides from water samples based on hydrophobic and ionic interactions. The effects of experimental variables on the extraction efficiency have been studied in detail. Under the optimized conditions, the method validation was performed. Good linearities for seven phenoxy acid herbicides were obtained with squared regression coefficients ranging from 0.9971 to 0.9989. The limits of detection ranged from 0.01 to 0.02 μg/L. The method recoveries of seven phenoxy acid herbicides spiked at three concentration levels in a blank sample were from 92.3 to 103.2%, with inter‐ and intraday relative standard deviations less than 12.6%.  相似文献   

16.
The authors describe a dopamine (DA) sensor based on a glassy carbon electrode modified with a composite film composed of carbon dots (C-dots) and graphene functionalized with an ionic liquid. The C-dots were functionalized with carboxy groups whose negative charge promotes electrostatic attraction to the protonated amino groups in DA. The presence of an imidazole cation in the IL facilitates interaction with the C-dots and DA via electrostatic interactions and π-stacking forces. Under optimal conditions, the modified GCE display improved electrochemical response to DA compared to a bare GCE, or a GCE modified with C-dots or IL-graphene only. The oxidation current, measured best at a potential of 0.22 V (vs. Ag/AgCl) is linearly related to the DA concentration in the 0.1 to 600 μM range, with a 30 nM detection limit at a signal-to-noise ratio of 3. Ascorbic acid does not interfere even in large excess, and the sensor is stable for at least a month. The modified GCE was applied to the determination of DA in spiked fetal bovine serum and gave satisfactory results.  相似文献   

17.
The alkylative carboxylation of ynamides and allenamides with CO2 and alkylzinc halides catalyzed by a copper catalyst was developed. A variety of alkylzinc halides bearing functional groups were used for this transformation to afford α,β-unsaturated carboxylic acids, which contain the α,β-dehydroamino acid skeleton, introducing the corresponding alkyl group and CO2 across the carbon–carbon triple or double bond. This alkylative carboxylation formally consists of Cu-catalyzed carbozincation of ynamides or allenamides with alkylzinc halides and the subsequent nucleophilic carboxylation of the resulting alkenylzinc species with CO2. This protocol would be a useful method for the synthesis of α,β-dehydroamino acid derivatives possessing a functionalized alkyl group due to the high regio- and stereoselectivity, simple one-pot procedure as well as the use of CO2 as a starting material.  相似文献   

18.
An effective way to synthesize liquid crystalline ionomers by an exchange reaction between the acid groups of functionalized LC polymers and a metal acetate was examined. A number of LC ionomers containing ions of the alkaline metals Na and Rb (1.2–18.3 mol‐%) were obtained. The introduction of small amounts (1.2–5 mol‐%) of metal ions into a functionalized LC polymer matrix leads to significant changes in the phase state of copolymers – the nematic phase is replaced by a SmA phase; an increase of the content of alkaline metal ions causes linear growth of clearing temperatures. The influence of the nature of the metal ions on the phase behavior of LC ionomers was determined. To describe the peculiarities of the LC ionomers' phase behavior a model based on the assumption that an ion multiplet is formed was proposed. Here, the rigidity of the functionalized LC copolymer chains used as a matrix for the preparation of LC ionomers was taken into consideration.  相似文献   

19.
We report two methods that involve tailoring of the chemical composition of the nematic liquid crystal 4-cyano-4'-pentylbiphenyl to achieve control over the orientational ordering of the liquid crystal on chemically functionalized surfaces. The first method involves the direct addition of 4-cyano-4'-biphenylcarboxylic acid to 4-cyano-4'-pentylbiphenyl. The second method involves exposure of 4-cyano-4'-pentylbiphenyl to ultraviolet light and photochemical generation of a range of products, including 4-cyano-4'-biphenylcarboxylic acid. The addition of the acid or exposure to ultraviolet light accelerated the rate at which the liquid crystal exhibited an orientational transition from planar to perpendicular (homeotropic) alignment on surfaces presenting ammonium groups. The appearance of the homeotropic orientation of the UV-treated 4-cyano-4'-pentylbiphenyl on ammonium-terminated surfaces was dependent on the thickness of the film of liquid crystal (13-50 mum), consistent with a dipolar coupling between the liquid crystal and the electric field associated with an electrical double layer generated at the ammonium surface. Although the addition of 4-cyano-4'-biphenylcarboxylic acid or UV treatment of the liquid crystal also promoted homeotropic orientations on surfaces presenting hydroxyl groups, the orientations of the UV-treated liquid crystal on the hydroxyl-terminated surface did not change with thickness of the film of liquid crystal in the manner observed on the ammonium-terminated surfaces. The latter result indicates that the mechanism leading to homeotropic anchoring on hydroxyl-terminated surfaces is distinct from that on ammonium-terminated surfaces. Measurements performed using polarization modulation infrared reflection-absorption spectroscopy suggest that hydrogen bonding between the 4-cyano-4'-biphenylcarboxylic acid and the hydroxyl-terminated surface is responsible for the homeotropic anchoring on the surface. Finally, the orientation of the liquid crystal on methyl-terminated surfaces was not influenced by the addition of 4-cyano-4'-biphenylcarboxylic acid nor UV treatment. These results illustrate how the chemical composition of liquid crystals can be manipulated to achieve control over their ordering on surfaces that possess chemical functionality relevant to the development of liquid crystal-based sensors and diagnostic tools. We illustrate the utility of this approach by using the tailored liquid crystal to amplify and optically transduce the presence of proteins arrayed on ammonium-terminated surfaces.  相似文献   

20.
Convenient methods for the synthesis of functionalized organophosphorus compounds containing carbonyl groups as well as di‐ or trialkoxymethyl fragments attached to phosphorus, and their derivatives, starting from the available derivatives of trivalent phosphorus acids, are proposed, and some properties of the new functionalized organophosphorus compounds are presented. So, the alkylation and acylation reaction of (dialkoxymethyl) phosphonites and their analogs have been studied. It is found that the Arbuzov rearrangement of these compounds was accompanied by the phosphorus–carbon bond cleavage with unique retention of the three‐coordinate phosphorus. © 2012 Wiley Periodicals, Inc. Heteroatom Chem 23:352–372, 2012; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.21024  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号