首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The depletion of fossil fuels has accelerated the search for clean, sustainable, scalable, and environmentally friendly alternative energy sources. Hydrogen is a potential energy carrier because of its advantageous properties, and the electrolysis of water is considered as an efficient method for its industrial production. However, the high-energy conversion efficiency of electrochemical water splitting requires cost-effective and highly active electrocatalysts. Therefore, researchers have aimed to develop high-performance electrode materials based on non-precious and abundant transition metals for conversion devices. Moreover, to further reduce the cost and complexity in real-world applications, bifunctional catalysts that can be simultaneously active on both the anodic (i.e., oxygen evolution reaction, OER) and cathodic (i.e., hydrogen evolution reaction, HER) sides are economically and technically desirable. This Minireview focuses on the recent progress in transition-metal-based materials as bifunctional electrocatalysts, including several promising strategies to promote electrocatalytic activities for overall water splitting in alkaline media, such as chemical doping, defect (vacancy) engineering, phase engineering, facet engineering, and structure engineering. Finally, the potential for further developments in rational electrode materials design is also discussed.  相似文献   

2.
An ultrathin (ca. 2 nm) amorphous FeOOH overlayer was deposited conformally on a hematite nanostructure by a simple solution‐based precipitation method, to generate an oxygen evolution cocatalyst for efficient solar water splitting. This uniform and highly conformal coating of the ultrathin metal oxyhydroxide is rare and is distinguished from the layers prepared by other conventional methods. With the FeOOH overlayer as the cocatalyst, the water oxidation photocurrent of hematite increased by a factor of approximately two and the onset potential shifted in the cathodic direction by 0.12 V under 1 sun illumination. The enhanced performance was attributed to the improved water oxidation kinetics and the passivation of the surface states of the hematite.  相似文献   

3.
Photoelectrochemical (PEC) water splitting is an attractive strategy for the large‐scale production of renewable hydrogen from water. Developing cost‐effective, active and stable semiconducting photoelectrodes is extremely important for achieving PEC water splitting with high solar‐to‐hydrogen efficiency. Perovskite oxides as a large family of semiconducting metal oxides are extensively investigated as electrodes in PEC water splitting owing to their abundance, high (photo)electrochemical stability, compositional and structural flexibility allowing the achievement of high electrocatalytic activity, superior sunlight absorption capability and precise control and tuning of band gaps and band edges. In this review, the research progress in the design, development, and application of perovskite oxides in PEC water splitting is summarized, with a special emphasis placed on understanding the relationship between the composition/structure and (photo)electrochemical activity.  相似文献   

4.
5.
We report a synthetic method to enhance the electrocatalytic activity of birnessite for the oxygen evolution reaction (OER) by intercalating Ni2+ ions into the interlayer region. Electrocatalytic studies showed that nickel (7.7 atomic %)‐intercalated birnessite exhibits an overpotential (η) of 400 mV for OER at an anodic current of 10 mA cm?2. This η is significantly lower than the η values for birnessite (η≈700 mV) and the active OER catalyst β‐Ni(OH)2 (η≈550 mV). Molecular dynamics simulations suggest that a competition among the interactions between the nickel cation, water, and birnessite promote redox chemistry in the spatially confined interlayer region.  相似文献   

6.
Interface engineering has been applied as an effective strategy to boost the electrocatalytic performance because of the strong coupling and synergistic effects between individual components. Here, we engineered vertically aligned FeOOH/CoO nanoneedle array with a synergistic interface between FeOOH and CoO on Ni foam (NF) by a simple impregnation method. The synthesized FeOOH/CoO exhibits outstanding electrocatalytic activity and stability for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in an alkaline medium. For the overall water splitting, the bifunctional FeOOH/CoO nanoneedle catalyst requires only a cell voltage of 1.58 V to achieve a current density of 10 mA cm−2, which is much lower than that required for IrO2//Pt/C (1.68 V). The FeOOH/CoO catalyst has been successfully applied for solar cell-driven water electrolysis, revealing its great potential for commercial hydrogen production and solar energy storage.  相似文献   

7.
Electrochemical water splitting by renewable energy resources is an efficient and green approach for hydrogen gas production. However, the anodic oxygen evolution reaction (OER) largely impedes the industrial application due to its sluggish four-electron-transition kinetics. Although various materials have been developed to accelerate the OER rate, still some issues should be addressed to meet the industrial demand: (i) considerable 200–300 mV overpotential as extra onset energy input, (ii) limited survival and performance in acidic electrolyte for the majority of oxide/hydroxide composite materials, (iii) unsatisfying long-term durability and (iv) the need for facile and scalable preparation methods. Here, we emphasize on multi-metallic composites with enhanced OER activity based on both precious and nonprecious elements that outperform the unary and binary composites. The regulation effect from multi-metal incorporation is also summarized systematically: (i) introducing foreign metal atoms to the host material boosts the physical properties such as conductivity, surface area, defect density, morphology, wettability, etc., (ii) metal doping can synergistically regulate the electronic features of the host material, e. g. oxygen vacancy, eg orbit filling, coordinative number and covalence state, which can optimize the absorption/desorption energy of the M−O intermediate, (iii) chaotic impact from the added atoms twists the catalyst lattice into a more aggressive and higher energy state, which is more feasible to transform to an active intermediate with lower required energy supply. This review aims to provide a practical approach to further improve the OER performance via multi-metallic-based catalysts.  相似文献   

8.
Colloidal catalysts for oxidation of water to dioxygen, which are stable on storage and under the reaction conditions, are synthesized based on CoIII, MnIII, FeIII and CuII hydroxides. Stabilization of the colloids with dextrated starch allows the process of hydroxide ageing to be stopped at the stage of the formation of primary nuclei (ca. 2–3 nm from transmission electron microscopy data). Molecular mechanics and dynamic light scattering studies indicate a core-shell type structure of the catalysts, where the hydroxide core is stabilized by the molecular starch network (ca. 5–7 nm). The colloidal catalysts are highly efficient in oxidizing water with one electron oxidant Ru(bpy)33+ at pH 7 to 10. The influence of pH, catalyst concentration, and buffer nature on the oxygen yield is studied. The maximal yields are 72, 53, and 78 % over Fe-, Mn- and Co-containing catalysts, respectively, and turnover numbers are 7.8; 54 and 360, respectively. The Cu-containing catalyst is poorly effective to the water oxidation (the maximal yield is 28 % O2). The synthesized catalysts are of interest for stopped-flow kinetic studies of the mechanism of the water oxidation and as precursors for anchoring nanosized hydroxides onto various supports in order to develop biomimetic systems for artificial photosynthesis.  相似文献   

9.
Photoelectrochemical (PEC) water splitting is a promising method for storing solar energy in the form of hydrogen fuel, but it is greatly hindered by the sluggish kinetics of the oxygen evolution reaction (OER). Herein, a facile solution impregnation method is developed for growing ultrathin (2 nm) highly crystalline β‐FeOOH nanolayers with abundant oxygen vacancies on BiVO4 photoanodes. These exhibited a remarkable photocurrent density of 4.3 mA cm?2 at 1.23 V (vs. reversible hydrogen electrode (RHE), AM 1.5 G), which is approximately two times higher than that of amorphous FeOOH fabricated by electrodeposition. Systematic studies reveal that the excellent PEC activity should be attributed to their ultrathin crystalline structure and abundant oxygen vacancies, which could effectively facilitate the hole transport/trapping and provide more active sites for water oxidation.  相似文献   

10.
Designing cost-effective and efficient electrocatalysts plays a pivotal role in advancing the development of electrochemical water splitting for hydrogen generation. Herein, multifunctional active-center-transferable heterostructured electrocatalysts, platinum/lithium cobalt oxide (Pt/LiCoO2) composites with Pt nanoparticles (Pt NPs) anchored on LiCoO2 nanosheets, are designed towards highly efficient water splitting. In this electrocatalyst system, the active center can be alternatively switched between Pt species and LiCoO2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Specifically, Pt species are the active centers and LiCoO2 acts as the co-catalyst for HER, whereas the active center transfers to LiCoO2 and Pt turns into the co-catalyst for OER. The unique architecture of Pt/LiCoO2 heterostructure provides abundant interfaces with favorable electronic structure and coordination environment towards optimal adsorption behavior of reaction intermediates. The 30 % Pt/LiCoO2 heterostructured electrocatalyst delivers low overpotentials of 61 and 285 mV to achieve 10 mA cm−2 for HER and OER in alkaline medium, respectively.  相似文献   

11.
The Earth‐abundant and inexpensive manganese oxides (MnOx) have emerged as an intriguing type of catalysts for the water oxidation reaction. However, the overall turnover frequencies of MnOx catalysts are still much lower than that of nanostructured IrO2 and RuO2 catalysts. Herein, we demonstrate that doping MnOx polymorphs with gold nanoparticles (AuNPs) can result in a strong enhancement of catalytic activity for the water oxidation reaction. It is observed that, for the first time, the catalytic activity of MnOx/AuNPs catalysts correlates strongly with the initial valence of the Mn centers. By promoting the formation of Mn3+ species, a small amount of AuNPs (<5 %) in α‐MnO2/AuNP catalysts significantly improved the catalytic activity up to 8.2 times in the photochemical and 6 times in the electrochemical system, compared with the activity of pure α‐MnO2.  相似文献   

12.
In this work, the assessment of Azadirachta indica, Tagetes erecta, Chrysanthemum morifolium, and Lentinula edodes extracts as catalysts for the green synthesis of zinc oxide nanoparticles (ZnO NPs) was performed. The photocatalytic properties of ZnO NPs were investigated by the photodegradation of methylene blue (MB) dye under sunlight irradiation. UV-visible (UV-Vis) spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD), Thermogravimetric (TGA), and Brunauer-Emmett-Teller analysis (BET) were used for the characterization of samples. The XRD results indicate that all synthesized nanoparticles have a hexagonal wurtzite crystalline structure, which was confirmed by TEM. Further, TEM analysis proved the formation of spherical and hemispherical nanoparticles of ZnO with a size in the range of 14–32 nm, which were found in aggregate shape; such a size was well below the size of the particles synthesized with no extract (~43 nm). ZnO NPs produced with Tagetes erecta and Lentinula edodes showed the best photocatalytic activity, matching with the maximum adsorbed MB molecules (45.41 and 58.73%, respectively). MB was completely degraded in 45 min using Tagetes erecta and 120 min using Lentinula edodes when subjected to solar irradiation.  相似文献   

13.
The activity of eleven separated iron complexes and nine in situ‐generated iron complexes towards catalytic water oxidation have been examined in aqueous solutions with Ce(NH4)2(NO3)6 as the oxidant. Two iron complexes bearing tridentate and tetradentate macrocyclic ligands were found to be novel water oxidation catalysts. The one with tetradentate ligand exhibited a promising activity with a turnover number of 65 for oxygen evolution.  相似文献   

14.
Designing cost‐effective and efficient electrocatalysts plays a pivotal role in advancing the development of electrochemical water splitting for hydrogen generation. Herein, multifunctional active‐center‐transferable heterostructured electrocatalysts, platinum/lithium cobalt oxide (Pt/LiCoO2) composites with Pt nanoparticles (Pt NPs) anchored on LiCoO2 nanosheets, are designed towards highly efficient water splitting. In this electrocatalyst system, the active center can be alternatively switched between Pt species and LiCoO2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Specifically, Pt species are the active centers and LiCoO2 acts as the co‐catalyst for HER, whereas the active center transfers to LiCoO2 and Pt turns into the co‐catalyst for OER. The unique architecture of Pt/LiCoO2 heterostructure provides abundant interfaces with favorable electronic structure and coordination environment towards optimal adsorption behavior of reaction intermediates. The 30 % Pt/LiCoO2 heterostructured electrocatalyst delivers low overpotentials of 61 and 285 mV to achieve 10 mA cm?2 for HER and OER in alkaline medium, respectively.  相似文献   

15.
Surface modulation and heteroatom doping are important approaches for boosting the electrocatalytic performances of MoS2 nanosheets. As a molecular electrocatalyst, the natural organic phytic acid (PA) offer attractive intermediate for oxygen evolution reaction (OER). Here, a surface modulation strategy is demonstrated through the decoration of PA onto the basal plane of iron (Fe)-doped MoS2 nanosheets supported on nickel foam (NF) for boosted OER activity. Experimental results indicate that the PA modification and Fe doping could effectively boost the charge transfer and mass transport during the OER process. Specially, PA2-Fe−MoS2 grown on NF (PA2-Fe−MoS2/NF) exhibits excellent OER activity (218 mV@20 mA cm−2) and durability, even superior to RuO2 and many other previously reported OER catalysts. This natural organic molecule modification provides a facile strategy to designing low-cost and efficient electrocatalytic materials.  相似文献   

16.
Since the water oxidation half-reaction requires the transfer of multi-electrons and the formation of O−O bond, it's crucial to investigate the catalytic behaviours of semiconductor photoanodes. In this work, a bio-inspired copper-bipyridine catalyst of Cu(dcbpy) is decorated on the nanoporous Si photoanode (black Si, b-Si). Under AM1.5G illumination, the b-Si/Cu(dcbpy) photoanode exhibits a high photocurrent density of 6.31 mA cm−2 at 1.5 VRHE at pH 11.0, which is dramatically improved from the b-Si photoanode (1.03 mA cm−2) and f-Si photoanode (0.0087 mA cm−2). Mechanism studies demonstrate that b-Si/Cu(dcbpy) has improved light-harvesting, interfacial charge-transfer, and surface area for water splitting. More interestingly, b-Si/Cu(dcbpy) exhibits a pH-dependent water oxidation behaviour with a minimum Tafel slope of 241 mV/dec and the lowest overpotential of 0.19 V at pH 11.0, which is due to the monomer/dimer equilibrium of copper catalyst. At pH ∼11, the formation of dimeric hydroxyl-complex could form O−O bond through a redox isomerization (RI) mechanism, which decreases the required potential for water oxidation. This in-depth understanding of pH-dependent water oxidation catalyst brings insights into the design of dimer water oxidation catalysts and efficient photoanodes for solar energy conversion.  相似文献   

17.
Hematite has been widely studied for catalytic water splitting, but the role of the interactions between catalytic sites is unknown. In this paper, we calculate the oxygen evolution reaction free energies and the surface adsorption distribution using a combination of density functional theory and Monte Carlo simulations to “cover the waterfront,” or cover a wide range of properties with a simulation of the hematite surface under working conditions. First, we show that modeling noninteracting catalytic sites provides a poor explanation of hematite's slow reaction kinetics. The interactions between the catalytic site may hinder catalysis through the strong interactions of *OH2 and *OOH intermediates, which cause the reaction to revert back to the *O intermediate. Hence, neighboring interactions may be a possible reason for the abundant, experimentally observed *O intermediate on the surface. This study demonstrates how neighboring sites impact the energy required for catalytic steps, thus providing new avenues to improve catalysis by controlling neighboring site interactions.  相似文献   

18.
The conventional electrolytic water-splitting process for hydrogen production is plagued by high energy consumption, low efficiency, and the requirement of expensive catalysts. Therefore, finding effective, affordable, and stable catalysts to drive this reaction is urgently needed. We report a nanosheet catalyst composed of carbon nanotubes encapsulated with MoC/Mo2C, the Ni@MoC-700 nanosheet showcases low overpotentials of 275 mV for the oxygen evolution reaction and 173 mV for the hydrogen evolution reaction at a current density of 10 mA ⋅ cm−2. Particularly noteworthy is its outstanding performance in a two-electrode system, where a cell potential of merely 1.64 V is sufficient to achieve the desired current density of 10 mA ⋅ cm−2. Furthermore, the catalyst demonstrates exceptional durability, maintaining its activity over a continuous operation of 40 hours with only minimal attenuation in overpotential. These outstanding activity levels and long-term stability unequivocally highlight the promising potential of the Ni@MoC-700 catalyst for large-scale water-splitting applications.  相似文献   

19.
An aerosol‐spray‐assisted approach (ASAA) is proposed and confirmed as a precisely controllable and continuous method to fabricate amorphous mixed metal oxides for electrochemical water splitting. The proportion of metal elements can be accurately controlled to within (5±5) %. The products can be sustainably obtained, which is highly suitable for industrial applications. ASAA was used to show that Fe6Ni10Ox is the best catalyst among the investigated Fe‐Ni‐Ox series with an overpotential of as low as 0.286 V (10 mA cm?2) and a Tafel slope of 48 mV/decade for the electrochemical oxygen evolution reaction. Therefore, this work contributes a versatile, continuous, and reliable way to produce and optimize amorphous metal oxide catalysts.  相似文献   

20.
Two effective methods to prepare reduced graphene oxide (rGO)/hematite nanostructured photoanodes and their photoelectrochemical characterization towards water splitting reactions are presented. First, graphene oxide (GO) is reduced to rGO using hydrazine in a basic solution containing tetrabutylammonium hydroxide (TBAOH), and then deposited over the nanostructured hematite photoanodes previously treated at 750 °C for 30 min. The second method follows the deposition of a paste containing a mixture of hematite nanoparticles and rGO sheets by the doctor‐blade method, varying the rGO concentration. Since hematite suffers from low electron mobility, a low absorption coefficient, high recombination rates and slow reaction kinetics, the incorporation of rGO in the hematite can overcome such limitations due to graphene's exceptional properties. Using the first method, the rGO incorporation results in a photocurrent density increase from 0.56 to 0.82 mA cm?2 at 1.23 VRHE. Our results indicate that the rGO incorporation in the hematite photoanodes shows a positive effect in the reduction of the electron–hole recombination rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号