首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The decomposition of copper formate clusters is investigated in the gas phase by infrared multiple photon dissociation of Cu(II)n(HCO2)2n+1, n≤8. In combination with quantum chemical calculations and reactivity measurements using oxygen, elementary steps of the decomposition of copper formate are characterized, which play a key role during calcination as well as for the function of copper hydride based catalysts. The decomposition of larger clusters (n > 2) takes place exclusively by the sequential loss of neutral copper formate units Cu(II)(HCO2)2 or Cu(II)2(HCO2)4, leading to clusters with n=1 or n=2. Only for these small clusters, redox reactions are observed as discussed in detail previously, including the formation of formic acid or loss of hydrogen atoms, leading to a variety of Cu(I) complexes. The stoichiometric monovalent copper formate clusters Cu(I)m(HCO2)m+1, (m=1,2) decompose exclusively by decarboxylation, leading towards copper hydrides in oxidation state +I. Copper oxide centers are obtained via reactions of molecular oxygen with copper hydride centers, species containing carbon dioxide radical anions as ligands or a Cu(0) center. However, stoichiometric copper(I) and copper(II) formate Cu(I)(HCO2)2 and Cu(II)(HCO2)3, respectively, is unreactive towards oxygen.  相似文献   

2.
Rational regulation of electronic structures and functionalities of framework materials still remains challenging. Herein, reaction of 4,4′,4′′-nitrilo-tribenzhydrazide with tris(μ2-4-carboxaldehyde-pyrazolato-N,N′)-tricopper (Cu3Py3) generates the crystalline copper organic framework USTB-11(Cu). Post-modification with divalent nickel ions affords the heterometallic framework USTB-11(Cu,Ni). Powder X-ray diffraction and theoretical simulations reveal their two-dimensional hexagonal structure geometry. A series of advanced spectroscopic techniques disclose the mixed CuI/CuII state nature of Cu3Py3 in USTB-11(Cu,Ni) with a uniform bistable Cu34+(CuI2CuII) : Cu35+(CuICuII2) (ca. 1 : 3) oxidation state, resulting in a significantly improved formation efficiency of the charge-separation state. This endows the Ni sites with enhanced activity and USTB-11(Cu,Ni) with outstanding photocatalytic CO2 to CO performance with a conversion rate of 22 130 μmol g−1 h−1 and selectivity of 98 %.  相似文献   

3.
The title compound, poly[diammine­hexa‐μ‐cyano‐di­copper(I)­copper(II)­mercury(II)], [Cu3Hg(CN)6(NH3)2]n, has a novel threefold‐inter­penetrating structure of three‐dimensional frameworks. This three‐dimensional framework consists of two‐dimensional network Cu3(CN)4(NH3)2 complexes and rod‐like Hg(CN)2 complexes. The two‐dimensional network complex contains trigonal–planar CuI (site symmetry m) and octa­hedral CuII (site symmetry 2/m) in a 2:1 ratio. Two types of cyanide group form bridges between three coordination sites of CuI and two equatorial sites of CuII to form a two‐dimensional structure with large hexa­gonal windows. One type of CN group is disordered across a center of inversion, while the other resides on the mirror plane. Two NH3 mol­ecules (site symmetry 2) are located in the hexa­gonal windows and coordinate to the remaining equatorial sites of CuII. Both N atoms of the rod‐like Hg(CN)2 group (Hg site symmetry 2/m and CN site symmetry m) coordinate to the axial sites of CuII. This linkage completes the three‐dimensional framework and penetrates two hexa­gonal windows of two two‐dimensional network complexes to form the threefold‐inter­penetrating structure.  相似文献   

4.
The propulsion of photocatalytic hydrogen (H2) production is limited by the rational design and regulation of catalysts with precise structures and excellent activities. In this work, the [MoOS3]2− unit is introduced into the CuI clusters to form a series of atomically-precise MoVI−CuI bimetallic clusters of [Cu6(MoOS3)2(C6H5(CH2)S)2(P(C6H4R)3)4] ⋅ xCH3CN (R=H, CH3, or F), which show high photocatalytic H2 evolution activities and excellent stability. By electron push-pull effects of the surface ligand, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels of these MoVI−CuI clusters can be finely tuned, promoting the resultant visible-light-driven H2 evolution performance. Furthermore, MoVI−CuI clusters loaded onto the surface of magnetic Fe3O4 carriers significantly reduced the loss of catalysts in the collection process, efficiently addressing the recycling issues of such small cluster-based catalyst. This work not only highlights a competitively universal approach on the design of high-efficiency cluster photocatalysts for energy conversion, but also makes it feasible to manipulate the catalytic performance of clusters through a rational substituent strategy.  相似文献   

5.
The title compound, {[Cu(NH3)4][Cu(CN)3]2}n, features a CuI–CuII mixed‐valence CuCN framework based on {[Cu2(CN)3]}n anionic layers and [Cu(NH3)4]2+ cations. The asymmetric unit contains two different CuI ions and one CuII ion which lies on a centre of inversion. Each CuI ion is coordinated to three cyanide ligands with a distorted trigonal–planar geometry, while the CuII ion is ligated by four ammine ligands, with a distorted square‐planar coordination geometry. The interlinkage between CuI ions and cyanide bridges produces a honeycomb‐like {[Cu2(CN)3]}n anionic layer containing 18‐membered planar [Cu(CN)]6 metallocycles. A [Cu(NH3)4]2+ cation fills each metallocyclic cavity within pairs of exactly superimposed {[Cu2(CN)3]}n anionic layers, but there are no cations between the layers of adjacent pairs, which are offset. Pairs of N—H...N hydrogen‐bonding interactions link the N—H groups of the ammine ligands to the N atoms of cyanide ligands.  相似文献   

6.

Abstract  

A EuIII cryptate complex constructed from a CuII cryptand with an L tBu ligand, [EuIIICu2II(L tBu)2(NO3)3(MeOH)], and the corresponding CaII and NaI cryptates, [CaIICu2II(L tBu)2(NO3)2(MeOH)2] and [NaICu2II(L tBu)2(Me2CO)](BPh4), have been synthesized and characterized in order to shed light on the essential role of CuII in the luminescence of a EuIII cryptate. The unprecedented role of a CuII cryptand makes it possible to produce lanthanide luminescence in a EuIII cryptate complex and is successfully elucidated by comparison with the corresponding CaII and NaI cryptates.  相似文献   

7.
Mixed‐valence copper(I/II) atoms have been introduced successfully into a Pb/I skeleton to obtain two heterometallic iodoplumbates, namely poly[bis(tetra‐n‐butylammonium) [bis(μ3‐dimethyldithiocarbamato)dodeca‐μ3‐iodido‐hexa‐μ2‐iodido‐tetracopper(I)copper(II)hexalead(II)]], {(C16H36N)2[Cu4ICuIIPb6(C3H6NS2)2I18]}n , (I), and poly[[μ3‐iodido‐tri‐μ2‐iodido‐iodido[bis(1,10‐phenanthroline)copper(I)]copper(I)copper(II)lead(II)] hemiiodine], {[CuICuIIPbI5(C12H8N2)2]·0.5I2}n , (II), under solution and solvothermal conditions, respectively. Compound (I) contains two‐dimensional anionic layers, which are built upon the linkages of CuII(S2CNMe2)2 units and one‐dimensional anionic Pb/I/CuI chains. Tetra‐n‐butylammonium cations are located between the anionic layers and connected to them via C—H…I hydrogen‐bonding interactions. Compound (II) exhibits a one‐dimensional neutral structure, which is composed of [PbI5] square pyramids, [CuII4] tetrahedra and [CuIIN4I] trigonal bipyramids. Face‐to‐face aromatic π–π stacking interactions between adjacent 1,10‐phenanthroline ligands stabilize the structure and assemble compound (II) into a three‐dimensional supramolecular structure. I2 molecules lie in the voids of the structure.  相似文献   

8.
A tetranuclear CuICuII mixed oxidation state complex, [CuII 2(μ-I)2CuI 2(μ-I)2(phenP)2I2] (phenPE: 2-(1H-pyrazol-1-yl)-1,10-phenanthroline), has been prepared and its crystal structure is determined by X-ray crystallography. In the complex, CuII is a distorted square pyramid and CuI is a distorted trigonal planar coordination environment; CuII and CuI are bridged by iodide. It is rare to form a CuII-iodide bond and for CuII and CuI to be bridged by iodide. In the crystal, there is a slipped ππ stacking between adjacent CuII complexes, which resulted in the formation of the 1-D chain along the c axis. The fitting for the variable-temperature magnetic susceptibility data gave magnetic coupling constant 2J?=??1.16?cm?1 and it may be ascribed to the intermolecular ππ magnetic coupling pathway.  相似文献   

9.
In the tetranuclear copper complex tetrakis[μ‐3,5‐bis(2‐pyridyl)‐1,2,4‐triazolido]bis[3,5‐bis(2‐pyridyl)‐1,2,4‐triazolido]dicopper(I)dicopper(II) dihydrate, [CuI2CuII2(C12H8N5)6]·2H2O, the asymmetric unit is composed of one CuI center, one CuII center, three anionic 3,5‐bis(2‐pyridyl)‐1,2,4‐triazole (2‐BPT) ligands and one solvent water molecule. The CuI and CuII centers exhibit [CuIN4] tetrahedral and [CuIIN6] octahedral coordination environments, respectively. The three independent 2‐BPT ligands adopt different chelating modes, which link the copper centers to generate a chair‐like tetranuclear metallomacrocycle with metal–metal distances of about 4.4 × 6.2 Å disposed about a crystallographic inversion center. Furthermore, strong π–π stacking interactions and O—H...N hydrogen‐bonding systems link the tetracopper clusters into a two‐dimensional supramolecular network.  相似文献   

10.
The intrinsic binding ability of 7 natural peptides (oxytocin, arg8‐vasopressin, bradykinin, angiotensin‐I, substance‐P, somatostatin, and neurotensin) with copper in 2 different oxidation states (CuI/II) derived from different Cu+/2+ precursor sources have been investigated for their charge‐dependent binding characteristics. The peptide‐CuI/II complexes, [M − (n‐1)H + nCuI] and [M − (2n‐1)H + nCuII], are prepared/generated by the reaction of peptides with CuI solution/Cu‐target and CuSO4 solution and are analyzed by using matrix‐assisted laser desorption/ionization (MALDI) time‐of‐flight mass spectrometry. The MALDI mass spectra of both [M − (n‐1)H + nCuI] and [M − (2n‐1)H + nCuII] complexes show no mass shift due to the loss of ─H atoms in the main chain ─NH of these peptides by Cu+ and Cu2+ deprotonation. The measured m/z value indicates the reduction of CuI/II oxidation state into Cu0 during MALDI processes. The number and relative abundance of Cu+ bound to the peptides are greater compared with the Cu2+ bound peptides. Oxytocin, arg8‐vasopressin, bradykinin, substance‐P, and somatostatin show the binding of 5Cu+, and angiotensin‐I and neurotensin show the binding of 7Cu+ from both CuI and Cu targets, while bradykinin shows the binding of 2Cu2+, oxytocin, arg8‐vasopressin, angiotensin‐I, and substance‐P; somatostatin shows the binding of 3Cu2+; and neurotensin shows 4Cu2+ binding. The binding of more Cu+ with these small peptides signifies that the bonding characteristics of both Cu+ and Cu2+ are different. The amino acid residues responsible for the binding of both Cu+ and Cu2+ in these peptides have been identified based on the density functional theory computed binding energy values of Cu+ and the fragment transformation method predicted binding preference of Cu2+ for individual amino acids.  相似文献   

11.
Abstract  A EuIII cryptate complex constructed from a CuII cryptand with an L tBu ligand, [EuIIICu2II(L tBu)2(NO3)3(MeOH)], and the corresponding CaII and NaI cryptates, [CaIICu2II(L tBu)2(NO3)2(MeOH)2] and [NaICu2II(L tBu)2(Me2CO)](BPh4), have been synthesized and characterized in order to shed light on the essential role of CuII in the luminescence of a EuIII cryptate. The unprecedented role of a CuII cryptand makes it possible to produce lanthanide luminescence in a EuIII cryptate complex and is successfully elucidated by comparison with the corresponding CaII and NaI cryptates. Graphical abstract   Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
By using a linear tetraphosphine, meso‐bis[(diphenylphosphinomethyl)phenylphosphino]methane (dpmppm), nona‐ and hexadecanuclear copper hydride clusters, [Cu9H7(μ‐dpmppm)3]X2 (X=Cl ( 1 a ), Br ( 1 b ), I ( 1 c ), PF6 ( 1 d )) and [Cu16H14(μ‐dpmppm)4]X2 (X2=I2 ( 2 c ), (4/3) PF6?(2/3) OH ( 2 d )) were synthesized and characterized. They form copper‐hydride cages of apex‐truncated supertetrahedral {Cu9H7}2+ and square‐face‐capped cuboctahedral {Cu16H14}2+ structures. The hydride positions were estimated by DFT calculations to be facially dispersed around the copper frameworks. A kinetically controlled synthesis gave an unsymmetrical Cu8H6 cluster, [Cu8H6(μ‐dpmppm)3]2+ ( 3 ), which readily reacted with CO2 to afford linear Cu4 complexes with formate bridges, leading to an unprecedented hydrogenation of CO2 into formate catalyzed by {Cu4(μ‐dpmppm)2} platform. The results demonstrate that new motifs of copper hydride clusters could be established by the tetraphosphine ligands, and the structures influence their reactivity.  相似文献   

13.
Nitrite (NO2) and nitric oxide (NO) interconversion is crucial for maintaining optimum NO flux in mammalian physiology. Herein we demonstrate that [ L 2CuII(nitrite)]+ moieties (in 2 a and 2 b ; where, L = Me2PzPy and Me2PzQu ) with distorted octahedral geometry undergo facile reduction to provide tetrahedral [ L 2CuI]+ (in 3 a and 3 b ) and NO in the presence of biologically relevant reductants, such as 4-methoxy-2,6-di-tert-butylphenol (4-MeO-2,6-DTBP, a tyrosine model) and N-benzyl-1,4-dihydronicotinamide (BNAH, a NAD(P)H model). Interestingly, the reaction of excess NO gas with [ L 2CuII(MeCN)2]2+ (in 1 a ) provides a putative {CuNO}10 species, which is effective in mediating the nitrosation of various nucleophiles, such as thiol and amine. Generation of the transient {CuNO}10 species in wet acetonitrile leads to NO2 as assessed by Griess assay and 14N/15N-FTIR analyses. A detailed study reveals that the bidirectional NOx-reactivity, namely, nitrite reductase (NIR) and NO oxidase (NOO), at a common CuII site, is governed by the geometric-preference-driven facile CuII/CuI redox process. Of broader interest, this study not only highlights potential strategies for the design of copper-based catalysts for nitrite reduction, but also strengthens the previous postulates regarding the involvement of red copper proteins in denitrification.  相似文献   

14.
Structural reorganization of polyamide (PA) and low-molecular-weight CuI and CuII complexes with biquinolyl (biQ) ligands during their mutual redox transformations in solution was studied using the electrochemical methods (cyclic voltammetry and preparative electrolysis) and quantum chemical DFT calculations. The influence of electronic factors and geometry distortions in the complexes on the ionization energy on going from CuI to CuII was evaluated in comparison. The catalytically active form of the [CuI(PA)L2]BF4 complex can be synthesized in situ from the stable tetrahedral complex [CuI(PA)2]BF4 by the series of successive redox transitions CuI → CuII → CuI accompanied by the loss of one biQ-containing macroligand. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1331–1340, July, 2007.  相似文献   

15.
One-pot reaction of tris(2-aminoethyl)amine (TREN), [CuI(MeCN)4]PF6, and paraformaldehyde affords a mixed-valent [TREN4CuIICuICuI3-OH)](PF6)3 complex. The macrocyclic azacryptand TREN4 contains four TREN motifs, three of which provide a bowl-shape binding pocket for the [Cu33-OH)]3+ core. The fourth TREN caps on top of the tricopper cluster to form a cryptand, imposing conformational constraints and preventing solvent interaction. Contrasting the limited redox capability of synthetic tricopper complexes reported so far, [TREN4CuIICuICuI3-OH)](PF6)3 exhibits several reversible single-electron redox events. The distinct electrochemical behaviors of [TREN4CuIICuICuI3-OH)](PF6)3 and its solvent-exposed analog [TREN3CuIICuIICuII3-O)](PF6)4 suggest that isolation of tricopper core in a cryptand enables facile electron transfer, allowing potential application of synthetic tricopper complexes as redox catalysts. Indeed, the fully reduced [TREN4CuICuICuI3-OH)](PF6)2 can reduce O2 under acidic conditions. The geometric constraints provided by the cryptand are reminiscent of Nature''s multicopper oxidases (MCOs). For the first time, a synthetic tricopper cluster was isolated and fully characterized at CuICuICuI (4a), CuIICuICuI (4b), and CuIICuIICuI (4c) states, providing structural and spectroscopic models for many intermediates in MCOs. Fast electron transfer rates (105 to 106 M−1 s−1) were observed for both CuICuICuI/CuIICuICuI and CuIICuICuI/CuIICuIICuI redox couples, approaching the rapid electron transfer rates of copper sites in MCO.

Geometric constraints and site isolation provided by the cryptand enable reversible redox of tricopper μ-oxo cluster.  相似文献   

16.
The reaction between 2,2′-bis(3-aminopyridyl) diselenide (L) and metal transition salts results in the formation of molecular or cluster complexes. The structural elucidation of the synthesized complexes [CuCl2(L)] ( 1 ), [Cu(3-NH2PySeO2)2]·2H2O ( 2 ), [Cu4(3-NH2PySe)4]·dimethylformamide ( 3 ), [CoCl2(L)] ( 4 ), [ZnCl2(L)] ( 5 ), and [Ag6(3-NH2PySe)6] ( 6 ) demonstrates the coordination of nitrogen atoms to CuII, CoII, and ZnII, and that of the selenium atoms to CuI and AgI, which agrees with Pearson’s hard and soft acids and bases (HSAB) theory. Furthermore, the oxidation of selenium with the formation of 3-aminopyridylseleninate [3-NH2PySeO2] bonded to the copper atom was observed in complex 2 . The antimicrobial action of complexes 1 , 2 , 4 , and 5 was evaluated against Mycobacterium fortuitum, Mycobacterium massiliense, and Mycobacterium abscessus. It was observed that all these complexes have potential antimicrobial activity compared with the free ligand and metal salts used in the synthesis.  相似文献   

17.
Coordination polymers (CPs) built by coordination bonds between metal ions/clusters and multidentate organic ligands exhibit fascinating structural topologies and potential applications as functional solid materials. The title coordination polymer, poly[diaquabis(μ4‐biphenyl‐3,4′,5‐tricarboxylato‐κ4O3:O3′:O4′:O5)tris[μ2‐1,4‐bis(1H‐imidazol‐1‐yl)benzene‐κ2N3:N3′]dicopper(II)dicopper(I)], [CuII2CuI2(C15H7O6)2(C12H10N4)3(H2O)2]n, was crystallized from a mixture of biphenyl‐3,4′,5‐tricarboxylic acid (H3bpt), 1,4‐bis(1H‐imidazol‐1‐yl)benzene (1,4‐bib) and copper(II) chloride in a water–CH3CN mixture under solvothermal reaction conditions. The asymmetric unit consists of two crystallographically independent Cu atoms, one of which is CuII, while the other has been reduced to the CuI ion. The CuII centre is pentacoordinated by three O atoms from three bpt3− ligands, one N atom from a 1,4‐bib ligand and one O atom from a coordinated water molecule, and the coordination geometry can be described as distorted trigonal bipyramidal. The CuI atom exhibits a T‐shaped geometry (CuN2O) coordinated by one O atom from a bpt3− ligand and two N atoms from two 1,4‐bib ligands. The CuII atoms are extended by bpt3− and 1,4‐bib linkers to generate a two‐dimensional network, while the CuI atoms are linked by 1,4‐bib ligands, forming one‐dimensional chains along the [20] direction. In addition, the completely deprotonated μ4‐η1111 bpt3− ligands bridge one CuI and three CuII cations along the a (or [100]) direction to form a three‐dimensional framework with a (103)2(10)2(42.6.102.12)2(42.6.82.10)2(8) topology via a 2,2,3,4,4‐connected net. An investigation of the magnetic properties indicated a very weak ferromagnetic behaviour.  相似文献   

18.
By using a linear tetraphosphine, meso-bis[(diphenylphosphinomethyl)phenylphosphino]methane (dpmppm), nona- and hexadecanuclear copper hydride clusters, [Cu9H7(μ-dpmppm)3]X2 (X=Cl ( 1 a ), Br ( 1 b ), I ( 1 c ), PF6 ( 1 d )) and [Cu16H14(μ-dpmppm)4]X2 (X2=I2 ( 2 c ), (4/3) PF6⋅(2/3) OH ( 2 d )) were synthesized and characterized. They form copper-hydride cages of apex-truncated supertetrahedral {Cu9H7}2+ and square-face-capped cuboctahedral {Cu16H14}2+ structures. The hydride positions were estimated by DFT calculations to be facially dispersed around the copper frameworks. A kinetically controlled synthesis gave an unsymmetrical Cu8H6 cluster, [Cu8H6(μ-dpmppm)3]2+ ( 3 ), which readily reacted with CO2 to afford linear Cu4 complexes with formate bridges, leading to an unprecedented hydrogenation of CO2 into formate catalyzed by {Cu4(μ-dpmppm)2} platform. The results demonstrate that new motifs of copper hydride clusters could be established by the tetraphosphine ligands, and the structures influence their reactivity.  相似文献   

19.
The reaction of CuCl2 · 2H2O and CdCl2 with di-(2-picolyl)sulfide (dps) leads to the formation of mononuclear copper(II) and binuclear cadmium(II) complexes, [Cu(dps)Cl2] · H2O (1) and [(dps)(Cl)CdII(μ-Cl)2CdII(Cl)(dps)] (2). The copper atom in (1) is coordinated to one sulfur and two nitrogen atoms from the dps ligand and two chlorides in a distorted square-pyramidal environment. Complex (2) has two distorted octahedra sharing the basal edge that contain the bridging chloro ligands, each of which resides at a center of inversion. Cyclic voltammetric data show that (1) undergoes two reversible one-electron waves corresponding to CuII/CuIII and CuII/CuI processes. However, cyclic voltammetry of (2) gives two irreversible reduced waves.  相似文献   

20.
Bacteria possess cytosolic proteins (Csp3s) capable of binding large quantities of copper and preventing toxicity. Crystal structures of a Csp3 plus increasing amounts of CuI provide atomic-level information about how a storage protein loads with metal ions. Many more sites are occupied than CuI equiv added, with binding by twelve central sites dominating. These can form [Cu4(S-Cys)4] intermediates leading to [Cu4(S-Cys)5], [Cu4(S-Cys)6]2−, and [Cu4(S-Cys)5(O-Asn)] clusters. Construction of the five CuI sites at the opening of the bundle lags behind the main core, and the two least accessible sites at the opposite end of the bundle are occupied last. Facile CuI cluster formation, reminiscent of that for inorganic complexes with organothiolate ligands, is largely avoided in biology but is used by proteins that store copper in the cytosol of prokaryotes and eukaryotes, where this reactivity is also key to toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号