首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Sequential tritylation, benzoylation and detritylation of D-glucose, followed by resolution of the crude product by chromatograpEy gave crystalline 1,2,3,4-tetra-O-benzoyl-α- (1) and β-D-glucopyranose (2). Compound 1, 2, and the corresponding methyl α-glycoside 5 were treated with dimethylaminosulfur trifluoride (methyl DAST) to give, respectively, the 6-deoxy-6-fluoro derivatives 3, 4, and 6. Crystalline 2,3,4-tri-O-benzoyl-6-deoxy-6-fluoro-α-D-glucopyranosyl chloride (10) could be obtained from either 3, 4, or 5 by reaction with dichloromethyl methyl ether in the presence of anhydrous zinc chloride. Silver trifluoromethanesulfonate-promoted reaction of 10 with methyl 2-O-(9) and 3-O-benzyl-4,6-O-benzylidene-α-D-glucopyranoside (8) gave the corresponding, (β-linked disaccharidës in high yield. Subsequent deprotection afforded the 6′-deoxy-6′-fluoro derivatives of methyl α-sophoroside (13) and methyl 6′ -deoxy-o′-fluoro-α-laminaribioside (16). Condensation of 8 and 9 with 6-O-acetyl-2,3,4-tri-O-benzyl-α-D-glucopyranosyl chloride in the presence of silver perchlorate was highly stereoselective and produced the α-linked disaccharidës 17 and 21, respectively, in excellent yield. Deacetylation of 17 and 21, followed by fluorination of the resulting alcohols 18 and 22 with methyl DAST and subsequent hydrogenolysis, gave 6′-deoxy-6′-fluoro derivatives of methyl α-kojibioside and methyl α-nigeroside 20 and 24, respectively.  相似文献   

2.
A xylosylated rhamnose pentasaccharide, α- l-Rha p-(1→3)-[β- l-Xyl p-(1→2)-] [β- l-Xyl p-(1→4)-]α- l-Rha p-(1→3)- l-Rha p, the repeating unit of the O-specific side chain of the lipopolysaccharides from the reference strains for Stenotrophomonas maltophilia serogroup O18, was synthesized by a highly regio- and stereoselective procedure. Thus coupling of methyl rhamnopyranoside (9) with 2,3,4-tri- O-acetyl-α- l-rhamnopyranosyl trichloroacetimidate (8) gave the (1→3)-linked disaccharide (10), and subsequent benzoylation and deacetylation afforded the disaccharide acceptor 12. Condensation of 12 with 8 yielded methyl 2,3,4-tri- O-acetyl-α- l-rhamnopyranosyl-(1→3)-α- l-rhamnopyranosyl-(1→3)-2,4-di- O-benzoyl-α- l-rhamnopyranoside (13). Coupling of 13 with 2,3,4-tri- O-benzoyl-α- l-xylopyranosyl trichloroacetimidate (4) followed by deprotection gave the target pentasaccharide (15).  相似文献   

3.
《Tetrahedron: Asymmetry》2001,12(12):1727-1735
α- and β-Glycosyl cyanides, per-O-acetyl-1,2-O-1-cyanoethylidenes and C-allyl glycopyranosides were efficiently prepared by treatment of 2,3,4-tri-O-acetyl-α,β-l-rhamno-, l-fuco- and 2,3,4,6-tetra-O-acetyl-α,β-d-galactopyranosyl propane-1,3-diyl phosphates with trimethylsilyl cyanide (TMSCN) and allyltrimethylsilane in the presence of trimethylsilyl triflate (TMSOTf). Similarly 2,3,4,6-tetra-O-benzyl-α,β-d-manno- and d-glucopyranosyl propane-1,3-diyl phosphates were employed in the synthesis of C-glycosides.  相似文献   

4.
ABSTRACT

Each of four ganglioside GM4 and GM3 analogues containing 2- or 3-branched fatty alkyl residues in place of ceramide have been synthesized. Coupling of O-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosylonate)-(2→3)-2,4,6-tri-O-benzoyl-α-D-galactopyranosyl trichloroacetimidate (13) or O-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-glacto-2-nonulopyranosylonate)-(2→3)-O-(2,4-di-O-acetyl-6-O-benzoyl-β-D-galactopyranosyl)-(1→4)-3-O-acetyl-2,4-di-O-benzoyl-α-D-glucopyranosyl trichloroacetimidate (14) with 2- or 3-branched fatty-alkyl-1-ols (9-12), prepared from the corresponding branched fatty acids by methyl esterification and reduction, using BF3Ot2 gave the corresponding ganglioside analogues (15, 17, 19, 21, 23, 25, 27, 29) in good yields, which were coverted, via O-deacylation and de-esterification, into the title compounds.  相似文献   

5.
The O-phthalimidomethyl trichloroacetimidate (1), as a latent aminomethylating agent, exhibits high electrophilicity towards a variety of C-nucleophiles in the presence of catalytic amounts of TMSOTf and mild reaction conditions. The nucleophiles include aromatics, alkenes and active methylene compounds 2-11 whereby a phthalimidomethyl group could be introduced to give compounds 12-22. Removal of the phthaloyl group gave the respective amines, β-amino ketones, and β-amino acids. The O-(trichloroacetamido)methyl trichloroacetimidate (35) was also found to be a good amidomethylating agent.  相似文献   

6.
Abstract

Four sialyl and sulfo Lex analogs containing glucose in place of N-acetylglucosamine, and a ceramide or 2-(tetradecyl)hexadecyl residue, have been synthesized. Condensation of O-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-d-glycero-α-d-galacto-2-nonulopyranosylonate)-(2→3)-O-(4-O-acetyl-2,6-diO-benzoyl-β-d-galactopyranosyl)-(1→4)-O-[(2,3,4-tri-O-acetyl-α-L-fucopyranosyl)-(1→3)]-2,4-di-O-benzoyl-α-d-glucopyranosyl trichloroacetimidate (1) with (2S,3R,4E)-2-azido-3-O-benzoyl-4-octadecene-1,3, diol (2) or 2-(tetradecyl)-hexadecyl-1-ol (3) gave the corresponding β-glycosides 4 and 7. Compound 4 was converted into the ganglioside 6 via selective reduction of the azido group, coupling with octadecanoic acid, O-deacylation, and saponification of the methyl ester group. Hydrolysis of the O-acyl groups in 7 followed by saponification of the methyl ester, gave sialyl Lex ganglioside analog 8 containing a branched fatty alkyl residue. On the other hand, glycosylation of O-(4-O-acetyl-2,6-di-O-benzoyl-3-O-levulinyl-β-d-galactopyranosyl)-(1→4)-[O-(2,3,4-tri-O-acetyl-α-L-fucopyranosyl)-(1→3)]-2,6-di-O-benzoyl-α-d-glucopyranosyl trichloroacetimidate (13), prepared from 2-(trimethylsilyl)ethyl O-(2,6-di-O-benzoyl-β-d-galactopyranosyl)-(1→4)-O-[(2,3,4-tri-O-benzyl-α-L-fucopyranosyl)-(1→3)]-2,6-di-O-benzoyl-β-d-glucopyranoside (9) via selective 3-O-levulinylation, acetylation, removal of the 2-(trimethylsilyl)ethyl group, with 2 or 3, gave the desired β-glycosides 14 and 19. Selective reduction of the axido group in 14 followed by coupling with octadecanoic acid gave the ceramide derivative 16. Removal of the levulinyl group in 16 and 19, treatment with sulfur trioxide pyridine complex and subsequent hydrolysis of the protecting groups yielded the corresponding sulfo Lex analogs 18 and 21.  相似文献   

7.
The trisaccharide derivative methyl 2-O-[4,6-di-O-acetyl-3-O-(2,3,4,6-tetra-O-benzyl-α-D-gal-actopyranosyl)-2-deoxy-2-phthalimido-β-D-gluco-pyranosyl]-4,6-O-benzylidene-β-D-mannopyranoside (12) was obtained when 3-O-(2,3,4,6-tetra-O-benzyl-α-D-galactopyranosyl)-4,6-di-Oacetyl-2-deoxy-2-phtha-limido-β-D-glucopyranosyl trichloroacetimidate (8) was allowed to react with methyl 3-O-benzyl-4,6-O-benzylidene-β-D-mannopyranoside (11) in presence of trimethylsilyl triflate. Removal of protecting groups then gave the desired trisaccharide.  相似文献   

8.
Abstract

The synthesis is reported of 3-aminopropyl 3-O-[4-O(β-L-rhamnopyranosyl)-β-D-glucopyranosyl]-α-L-rhamnopyranoside (34), 3-aminopropyl 2-acetamido-3-O-[4-0-(β-L-rhamnopyranosyl)-β-D-glucopyranosyl]-2-deoxy-β-D-galactopyranoside (37), 3-aminopropyl 3-O-[4-O-(β-L-rhamnopyranosyl)-α-D-glucopyranosyl]-α-D-galactofuranoside (41), and 3-aminopropyl 4-O-[4-O-(β-L-rhamnopyranosyl)-β-D-glucopyranosyl]-β-D-galactopyranoside (45). These are spacer-containing fragments of the capsular polysaccharides of Streptococcus pneumoniae type 2, 7F, 22F, and 23F, respectively, which are constituents of Pneumovax© 23. 2,3,4-Tri-O-benzyl-α-L-rhamnopyranosyl bromide was coupled to l,6-anhydro-2,3-di-(O-benzyl-β-D-glucopyranose (3). Opening of the anhydro ring, removal of AcO-1, and imidation of l,6-anhydro-2,3-di- O-benzyl-4-O-(2,3,4-tri-O-benzyl-β-L-rhamnopyranosyl)-β-D-glucopyranose (4β) afforded 6-O-acetyl-2,3-di-O-ben-zyl-4-O-(2,3,4-tri- O-benzyl-β-L-rhamnopyranosyl)-αβ-D-glucopyranosyl trichloroacet-imidate (7αβ). Condensation of 7αβ with 3-N-benzyloxycarbonylaminopropyl 2-O-ben-zyl-5,6-O-isopropylidene-α-D-galactofuranoside (26), followed by deprotection gave 41 Opening of the anhydro ring of 4 p followed by debenzylation, acerylauon, removal of AcO-1, and imidation yielded 2,3,6-tri-(9-aceryl-4-O-(2,3,4-tri-0-acetyl-P-L-rharnnopyran-.-osyl)-α-D-glucopyranosyl trichloroacetimidate (11). Condensation of 11 with 3-N-bcn-zyloxycarbonylaminopropyl 2,4-di-O-benzyl-α-L-rhamnopyranoside (18), with 3-N-bcn-zyloxycarbonylaminopropyl 2-acetamido-4,6-O-benzylidene-2-deoxy-β-D-galactopyran-oside (21), or with 3-N -benzyloxycarbonylaminopropyl 2-O-acetyl-3-O-allyl-6-O-benzyl-β-D-galactopyranoside (31), followed by deprotection afforded 34, 37, and 45, respectively.  相似文献   

9.
20, 21-Aziridine Steroids: Reaction of Derivatives of the Oximes of 5-Pregnen-20-one, 9β, 10α-5-Pregnen-20-one and 9β, 10α-5,7-Pregnadiene-20-one with Lithium Aluminium Hydride, and of 3β-Hydroxy-5-pregnen-20-one Oxime with Grignard Reagents. Reduction of 3β-hydroxy-5-pregnen-20-one oxime ( 2 ) with LiAlH4 in tetrahydrofuran yielded 20α-amino-5-pregnen-3β-ol ( 1 ), 20β-amino-5-pregnen-3β-ol ( 3 ), 20β, 21-imino-5-pregnen-3β-ol ( 6 ) and 20β, 21-imino-5-pregnen-3β-ol ( 9 ). The aziridines 6 and 9 were separated via the acetyl derivatives 7 and 10 . The reaction of 6 and 9 with CS2 gave 5-(3β-hydroxy-5-androsten-17β-yl)-thiazolidine-2-thione ( 8 ). Treatment of the 20-oximes 12 and 15 of the corresponding 9β,10α(retro)-pregnane derivatives with LiAlH4 gave the aziridines 13 and 16 , respectively. Their deamination led to the diene 14 and triene 17 , respectively. Reduction of isobutyl methyl ketone-oxime with LiAlH4 in tetrahydrofuran yielded 2-amino-4-methyl-pentane ( 19 ) as main product, 1, 2-imino-4-methyl-pentane ( 22 ) as second product and the epimeric 2,3-imino-4-methyl-pentanes 20 and 21 as minor products. – 3β-Hydroxy-5-pregnen-20-one oxime ( 2 ) was transformed by methylmagnesium iodide in toluene to 20α, 21-imino-20-methyl-5-pregnen-3β-ol ( 23 ) and 20β, 21-imino-20-methyl-5-pregnen-3β-ol ( 26 ). Acetylation of these aziridines was accompanied by elimination reactions leading to 3β-acetoxy-20-methylidene-21-N-acetylamino-5-pregnene ( 30 ) and 3β-acetoxy-20-methyl-21-N-acetylamino-5,17-pregnadiene ( 32 ). The reaction of oxime 2 with ethylmagnesium bromide in toluene gave 20α, 21-imino-20-ethyl-5-pregnen-3β-ol ( 24 ) and 20α,21-imino-20-ethyl-5-pregnen-3β-ol ( 27 ). Acetylation of 24 and 27 led to 3β-acetoxy-20-ethylidene-21-N-acetylamino-5-pregnene ( 31 ), 3β-acetoxy-20-ethyl-21-N-acetylamino-5,17-pregnadiene 33 and 3β, 20-diacetoxy-20-ethyl-21-N-acetylamino-5-pregnene ( 37 ). With phenylmagnesium bromide in toluene the oxime 2 was transformed to 20β, 21-imino-20-phenyl-5-pregnen-3β-ol ( 25 ) and 20β,21-imino-20-phenyl-5-pregnen-3β-ol ( 28 ). Acetylation of 25 and 28 yielded 3β-acetoxy-20-phenyl-21-N-acetylamino-5, 17-pregnadiene ( 34 ) and 3β,20-diacetoxy-20-phenyl-21-N-acetylamino-5-pregnene ( 39 ). LiAlH4-reduction of 39 gave 3β, 20-dihydroxy-20-phenyl-21-N-ethylamino-5-pregnene ( 41 ). – The 20, 21-aziridines are stable to LiAlH4. Consequently they are no intermediates in the formation of the 20-amino derivatives obtained from the oxime 2 .  相似文献   

10.
PMR spectra of d-aldosterone, its acetylated derivatives and related compounds were studied using 60 and 100 MHz spectrometers at various temperatures, in CDCI3, DMSO-d6, CD3OD and D2O. The aldehyde form ( 1 ) was not found. The solutions of d-aldosterone and aldosterone-21 acetate contain a mixture of the cyclic forms with one (11–18) hemi-ketal bridge ( 2 ) and two (11–18, 18–20) hemi-ketal bridges ( 3 ). Preliminary results concerning modifications of the relative concentration of 2 and 3 obtained by varying solvents and temperature are given. Aldosterone-diacetate exists in only one form, most likely form 2 . There is restricted rotation of the group at C-21 in d-aldosterone and in form 3 of aldosterone 21-acetate. One molecule of water is probably bound to d-aldosterone.  相似文献   

11.
Abstract

We have synthesized a single repeat unit of type VIII Group B Streptococcus capsular polysaccharide, the structure of which is {L-Rhap(β1→4)-D-Glcp(β1→4)[Neu5Ac(α2→3)]-D-Galp(β→4)}n. The synthesis presented three significant synthetic challenges namely: the L-Rhap(β→4)-D-Glcp bond, the Neu5Ac(α2→3)-D-Galp bond and 3,4-D-Galp branching. The L-Rhap bond was constructed in 60% yield (α:β 1:1.2) using 4-O-acetyl-2,3-di-O-benzoyl-α-L-rhamnopyranosyl bromide 6 as donor, silver silicate as promotor and 6-O-benzyl-2,3-di-O-benzoyl-1-thio-β-D-glucopyranoside as acceptor to yield disaccharide 18. The Neu5Ac(α2→3) linkage was synthesized in 66% yield using methyl [phenyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-D-glycero-D-galacto-nonulopyranosid]onate as donor and triol 2-(trimethylsilyl) ethyl 6-O-benzyl-β-D-galactopyranoside as acceptor to give disaccharide 21. The 3,4-D-Galp branching was achieved by regioselective glycosylation of disaccharide diol 21 by disaccharide 18 in 28% yield to give protected tetrasaccharide 22. Tetrasaccharide 22 was deprotected to give as its 2-(trimethylsilyl)ethyl glycoside the title compound 1a. In addition the 2-(trimethylsilyl)ethyl group was cleaved and the tetrasaccharide coupled by glycosylation (via tetrasaccharide trichloroacetimidate) to a linker suitable for conjugation.

  相似文献   

12.
《Tetrahedron》1986,42(12):3203-3214
Full assignments of the 1H-nmr chemical shifts of the ring A protons in gibberellin A20 methyl ester 13-acetate have been made on the basis of 1H-, 2H- and 13C-nmr data of various deuteriated derivatives. These assignments have been used to prove that catalytic deuteriogenation of GA5-16, 17- epoxide-13-acetate is a syn-addition from the less hindered β-face accompanied by allylic exchange at C-1 giving isotopic labels at the 1β-, 2β- and 3β- positions. The position and stereochemistry of isotopic labelling was confirmed by comparison with an authentic sample of [1β,2β,3β-2H3] GA20 methyl ester 13-acetate prepared by methods which introduce deuterium stereoselectively at C-1, C-2 and C-3. The preparation of [2α-2H]GA20 and [3α-2H]GA20 is described.  相似文献   

13.
The stereoselectivity of the Diels-Alder reaction of (E)-γ-oxo-α,β-unsaturated thioesters 3a-3d with cyclopentadiene is greatly enhanced in the presence of Lewis acids favoring the endo acyl isomers 4a-4d . In the absence of Lewis acid, Diels-Alder reaction of 3a-3d with cyclopentadiene at 25 °C gave two adducts 4a-4d and 5a-5d in a ratio of 1:1 respectively. In the presence of Lewis acids, Diels-Alder reaction of 3a-3d with cyclopentadiene gave 4a-4d and 5a-5d in ratios of 75-94:25-6 respectively. The stereoelectivity was enhanced to ratios of 95-98:5-2 with lowering the reaction temperature. The stereochemistry of the cycloadducts 4 and 5 was confirmed by iodocyclization. Reaction of the endo-thioester 5c with I2 in aqueous THF at 0 °C gave the novel methylthio group rearranged product 6c in 80% yield, the first example of iodo-lactonization of endo-thioesters. Reaction of the endo-acyl isomer 4b with I2 under the same reaction conditions gave an isomeric mixture of 7b and 8b in 1:2 ratio. The stereochemistry of the thioester group in 8b was proved by X-ray single-crystal analysis. The solvent effect on the endo selectivity of (Z)-γ-oxo-α,β-unsaturated thioester 2b was also examined.  相似文献   

14.
Abstract

Five sialyl Lew is X ganglioside analogs containing 4-(2-tetradecylhexadecanoylamino)benzyl group in place of ceramide and a variety of lengths of ethylene glycol chains as the spacer, have been synthesized. Glycosidation of O-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-glacto-2-nonulopyranosylonate)-(2→3)-O-(4-O-acetyl-2,6-di-O-benzoyl-β-D-galactopyranosyl)-(1→4)-O-[(2,3,4-tri-O-acetylα-L-fucopyranosyl)-(1→3)]-2,4-di-O-benzoyl-α-D-glucopyranosyl trichloroacetimidate (13) with oligo ethyleneglycol monobenzyl ether derivatives 9, 10, 11 and 12, prepared from the corresponding oligo ethyleneglycols by 4-nitrobenzylation, reduction and N-acylation with 2-tetradecylhexadecanoic acid, using boron trifluoride etherate gave the corresponding glycolipid derivatives 14, 15, 16 and 17. A similar glycosidation of 13 with 4-nitrobenzyl alcohol gave the 4-nitrobenzyl glycoside 18, which was converted via reduction of nitro group and N-acylation into the corresponding glycolipid derivative 19. Compounds 14-17 and 19 were transformed into the title compounds by O-deacylation and hydrolysis of methyl ester group in good yields.

  相似文献   

15.
The palladium-catalyzed substitution of alkyl 4,6-di-O-acetyl-α-d-erythro-hex-2-eno-pyranosides using NaN3 as the nucleophile gave predominantly the corresponding alkyl 2-azido-2,3,4-trideoxy-α-d-threo-hex-2-enopyranosides in the presence of Pd(PPh3)4. However, alkyl 6-O-acetyl-4-azido-2,3,4-trideoxy-α-d-erythro-hex-2-enopyranosides were obtained as the major products using Pd(PPh3)4 as the catalyst in the presence of dppb as the added ligand. Conversely, alkyl 6-O-(tert-butyldimethylsilyl)-4-O-methoxycarbonyl-2,3-dideoxy-α-d-hex-2-enopyranosides gave exclusively alkyl 4-azido-6-O-(tert-butyldimethylsilyl)-2,3,4-trideoxy-α-d-erythro-hex-2-enopyranosides in the presence of Pd2(dba)3/PPh3 as the catalyst and Me3SiN3 as the nucleophile. The bis-hydroxylation followed by hydrogenation of ethyl 4-azido-2,3,4-trideoxy-α-d-erythro-hex-2-enopyranoside afforded the corresponding 4-amino-α-d-mannopyranoside, when propyl 2-azido-2,3,4-trideoxy-α-d-threo-hex-3-enopyranoside gave the 2-amino-α-d-altropyranoside under the same conditions.  相似文献   

16.
Bromoacetylation of methyl 2,4-di-O-benzoyl-3-deoxy-3-fluoro-β-D-galactopyranoside, followed by the cleavage of the methoxy group from the resulting 6-O-bromoacetyl derivative 2 with 1,1-dichloromethyl methyl ether gave 2,4-di-0-benzoyl-6-0-bromoacetyl-3-deoxy-3-fluoro-α-D-galactopyranosyl chloride (3). Reaction of 3 with methyl 2,3,4-tri-O-benzoyl-β-D-galactopyranoside promoted by silver trifluoromethanesulfonate afforded methyl 0-(2,4-di-O-benzoyl-6-O-bromoacetyl-3-deoxy-3-fluoro-β-D-galacto-pyranosyl)-(1→6)-2,3,4-tri-O-benzoyl-β-D-galactopyranoside (5). O-Debromoacetylation of 5 with thiourea gave the disaccharide nucleophile 6 which was condensed with 2,3,4,6-tetra-O-benzoyl-α-D-galactopyranosyl bromide to afford the expected β-(trans)-linked trisaccharide derivative 7. Debenzoylation of 7 gave the methyl β-glycoside 8 of the (1→6)-linked D-galactotriose having the HO-3 of the internal residue replaced by a fluorine atom. Compound 8 was used to further delineate the subsites in the combining area of the monoclonal anti-(1→6)-β-D-galactan-specific immunoglobulin IgA J539.  相似文献   

17.
For the convenient synthesis of (1→6)‐α‐D ‐glucopyranan, i. e., dextran ( 4 ), ring‐opening polymerization of 1,6‐anhydro‐2,3,4‐tri‐O‐allyl‐β‐D ‐glucopyranose ( 1 ) has been carried out using BF3·OEt2. With a ratio of [BF3·OEt2]/[ 1 ] = 0.5 at 0 °C for 140 h, the yield and Mn of the obtained polymer are 84.0% and 21 700, respectively. The polymer consists of (1→6)‐α‐linked 2,3,4‐tri‐O‐allyl‐D ‐glucopyranose ( 2 ) which is similar to the results for the cationic ring‐opening polymerization of 1,6‐anhydro‐2,3,4‐tri‐O‐methyl‐β‐D ‐glucopyranose and 1,6‐anhydro‐2,3,4‐tri‐O‐ethyl‐β‐D ‐glucopyranose. Polymer 2 was isomerized using tris(triphenylphosphine)‐chlororhodium as the catalyst in toluene/ethanol/water to yield polymeric 2,3,4‐tri‐O‐propenyl‐(1→6)‐α‐D ‐glucopyranan ( 3 ). Deprotection of the propenyl ether linkage of 3 was then performed using hydrochloric acid in acetone to give 4 .  相似文献   

18.
The reaction of (diethylamino)sulfur trifluoride (DAST) with methyl 5-O-benzoyl-β-D -xylofuranoside ( 1 ) followed by column chromatography afforded the riboside 2 (62%) and the ribo-epoxide 3 (18%) (Scheme 1). Under similar reaction conditions, the α-D -anomer 4 gave the riboside 5 and the difluoride 6 in 60 and 9% yield, respectively. Treatment of the β-D -xyloside 10 with DAST gave, after chromatographic purification, the riboside 11 as the principal product (48%; Scheme 2). These results suggest that the C(3)−O−SF2NEt2 derivatives were initially formed in the case of the xylosides studied. The distinctive feature of the reaction of DAST with the β-D -arabinoside 12 consists in the formation of a 3- or 5-benzylideneoxoniumyl-substituted intermediate on one of the consecutive transformations, which finally give rise to the inversion of the configuration at C(3) affording the xylosides 17 (18%) and 18 (55%); the lyxoside 14 was also isolated from the reaction mixture in a yield of 25% (Scheme 3). In the presence of the non-participating 5-O-trityl group, i.e., from the reaction products of 21 with DAST, the compounds 23 and 24 were isolated in 16 and 52% yield, respectively (Scheme 4). It may be thus reasonable to conclude that, in the case of the β-D -arabinosides 12 and 21 , the principal route of the reaction is the formation of the intermediate C(2)−O−SF2NEt2 derivative. Unlike 21 , the α-D -arabinoside 26 was converted to the lyxo-epoxide 25 (53%) and the lyxoside 27 (14%), which implies the intermediate formation of the C(3)−O−SF2NEt2 derivative (Scheme 5).  相似文献   

19.
Uronates (as pyranosides or furanosides) bearing good leaving groups (mesylates, tosylates, phosphates, etc.) in β- and γ-position to the alkoxycarbonyl group (e.g. 1 ) give the epimeric β,γ-unsaturated α-alkoxy-β,γ-dideoxy-uronates 4 by treatment with organic or inorganic bases in alcoholic solution. This new rearrangement of carbohydrates was exemplified with a D -glucosamine derivative: an alcoholic solution of methyl [O (1)-benzyl-2-C-benzyloxyformamido]-2-deoxy-3,4-bis [O (methylsulfonyl)]-α-D -glucopyranosiduronate 1 in the presence of KOH, DBU, or strong alkaline anion exchange resins gave the C(5)-epimeric mixture of methyl [benzyl-2-[C-(benzyloxy)formamido]-2,3,4-trideoxy-5-alkoxy-α-D -glycero-hex-3-enopyranosid]uronates ( 4a–e ). The reaction took place with stoichiometric solvent participation using primary, secondary or tertiary alcohols. Other polyfunctional compounds having an alcoholic hydroxyl group can also participate in this reaction. Compounds obtained have been characterized in the form of their crystalline amides.  相似文献   

20.
Abstract

Starting from L-arabinose and methyl β-D-galactopyranoside, methyl 2,3,4-tri-O-benzyl-6-O-[2,4,6-tri-O-benzoyl-3-O-(23,5-tri-O-benzoyl-α-L-arabinofuranosyl)-β-D-galactopyranosyl]-β-D-galactopyranoside 10 has been synthesized. Removal of protecting groups gave the methyl glycoside 12 of a trisaccharide representative of a repeating unit of arabinogalactan (AGP) polysaccharides.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号