首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Asenapine is a recent drug approved in the European Union for the treatment of bipolar disorder. An original approach has been developed for asenapine analysis in patients treated with the drug, including miniaturized microsampling procedures, separation and quantitation of drug enantiomers. An original enantioselective method based on high‐performance liquid chromatography with diode array detection was developed and applied to the determination of asenapine enantiomer levels in innovative haematic samples: four micromatrices have been tested, two based on dried matrix spots (dried blood spots and dried plasma spots) and two based on volumetric absorptive microsampling (from blood and plasma). Chiral separation was achieved on a cellulose‐tris(3,5 dimethylphenylcarbamate) column, with a mobile phase containing bicarbonate buffer and acetonitrile. The method was validated with satisfactory results of linearity and precision on all matrices that showed also a significant performance in terms of stability, feasibility and reliability, when compared to fluid plasma sampling, handling and processing. Among micromatrices, both volumetric absorptive microsampling types were superior to dried matrix spots in terms of data reproducibility and correspondence with plasma levels. The bioanalytical approach proposed herein provides for the first time a chiral high‐performance liquid chromatographic method for the determination of asenapine enantiomers, coupled to a very effective microsampling strategy.  相似文献   

2.
Dried blood spot (DBS) sampling has gained considerable interest as a microsampling technique to support drug discovery and development owing to its enormous ethical and practical benefits. Quantitative determinations of drugs and/or their metabolites collected in DBS matrix in its current format, however, have encountered technical challenges and regulatory uncertainty. The challenges of DBS bioanalysis are largely ascribed to the way how samples are collected and analyzed. Currently, an uncontrolled amount of a blood sample, e.g. 20 µl, is collected per time point per sample and spotted onto cellulose paper. Quantitation is based on removal of a fixed area of the DBS sample, resulting in sample waste, a need for mechanical punching and concomitant potential punching carryover, uncertainty in recovery assessment and the adverse impact of hematocrit on accurate quantitation. Here, we describe the concept and applications of a novel concept, namely perforated dried blood spot (PDBS), for accurate microsampling that addresses previous challenges. Advantages of PDBS are enumerated and compared with conventional DBS in the context of microsampling and liquid chromatography tandem mass spectrometry bioanalysis. Two approaches for accurate microsampling of a small volume of blood (5 µl) are proposed and demonstrated, i.e. Microsafe® pipettes and the Drummond incremental pipette. Two online sample enrichment techniques to enhance liquid chromatography tandem mass spectrometry sensitivity for microsampling bioanalysis are discussed. The PDBS concept was successfully applied for accurate sample collection (5 µl) in a toxicokinetic study in rats given a single oral gavage dose of acetaminophen. Perspectives on bioanalytical method validation for regulated DBS/PDBS microsampling are also presented. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The determination of acetaminophen in biological samples of humans who have ingested normal and overdosage of the drug is necessary to understand the clinical pharmacokinetics of acetaminophen and to determine its distribution and toxicokinetic parameters. This paper describes a rapid, simple, and sensitive high-performance liquid chromatographic method for determining acetaminophen in human plasma. Acetaminophen is isolated from plasma by adding approximately 200 microL of acetonitrile and 50 mg of solid zinc sulfate to each milliliter of plasma. A short column (60 mm x 4.6 mm) slurry packed with 5.0-microns PRP-1 particles is used with an isocratic elution of 5.0 mM dibasic potassium phosphate and 5.0 mM tetrabutylammonium hydroxide/methanol, 70:30 (v/v). The flow rate is 1.0 mL/min. The acetaminophen peak is detected with a variable wavelength ultraviolet/visible detector at 250 nm and 0.50 to 0.002 AUFS. The analysis time of the assay is less than 15 min, and the limit of detection is 20 ng/mL for an 80-microL injection volume. The pharmacokinetics of acetaminophen in plasma from a subject who had orally ingested 975 mg of the drug in tablet form is conducted using this method, and various pharmacokinetic parameters are determined.  相似文献   

4.
The collection of human blood samples as dried blood spots (DBS) for the pharmacokinetic assessment of investigational drugs in clinical trials offers a number of advantages over conventional plasma sampling, namely, small sample volume, simplified sample handling, and cost-effective shipping and storage. The use of DBS coupled with liquid chromatography–tandem mass spectrometry analysis was evaluated for the quantification of MK-1775, a Wee-1 inhibitor under development as a chemo/radio-sensitizer for the treatment of cancer. The DBS method exhibited an assay performance comparable to that of the existing plasma assay, which is currently used in support of clinical studies. Both assays used the same linear dynamic range of 2–1,000?ng/mL, with a lower limit of quantification of 2?ng/mL. Based on the intra-day assay validation results, the accuracy of the DBS method ranged from 94.0 to 105.0?%, with a coefficient of variation of <4.8?%. The blood-to-plasma ratio calculated from the DBS data (blood concentrations) and the plasma data (plasma concentrations) was in good agreement with the one obtained from the in vitro assessment using conventional methodology. No significant hematocrit impact on the assay was observed as hematocrit ranged from 16 to 85?%. The correlation between the measured MK-1775 concentrations in plasma and that determined in dried blood spots from oncology patients during the ongoing clinical study was discussed.  相似文献   

5.
Monoclonal antibodies (mAbs) have been extensively developed over the past few years, for the treatment of various inflammatory diseases. They are large molecules characterized by complex pharmacokinetic and pharmacodynamic properties. Therapeutic drug monitoring (TDM) is routinely implemented in the therapy with mAbs, to monitor patients’ treatment response and to further guide dose adjustments. Serum has been the matrix of choice in the TDM of mAbs and its sampling requires the visit of the patients to laboratories that are not always easily accessible. Therefore, dried blood spots (DBS) and various microsampling techniques have been suggested as an alternative. DBS is a sampling technique in which capillary blood is deposited on a special filter paper. It is a relatively simple procedure, and the patients can perform the home-sampling. The convenience it offers has enabled its use in the quantification of small-molecule drugs, whilst in the recent years, studies aimed to develop microsampling methods that will facilitate the TDM of mAbs. Nevertheless, hematocrit still remains an obstacle that hinders a more widespread implementation of DBS in clinical practice. The introduction of novel analytical techniques and contemporary microsampling devices can be considered the steppingstone to the attempts made addressing this issue.  相似文献   

6.
7.
《Electrophoresis》2017,38(6):906-913
Two‐dimensional (2D) gel electrophoresis is a well‐proven proteomic technique; however, sample‐specific optimisation can often be necessary in order to get consistent quantitation. In particular, plasma samples are often smeared on 2D gels making spot matching difficult. A variety of different sample preparation and 2D methods were tested by using sheep plasma, and it was found that lowering sample pH prior to precipitation, using a long voltage gradient for isoelectric focusing and the inclusion of carrier ampholytes in the electrode wicks, improved both the quality and consistency of spot resolution. Analysis of the internal standards from two different DIGE experiments, one with conventional methodology and one with the improved method, showed that along with substantially improving the number of spots resolved, the average CV (coefficient of variation) of matched standards was lower with the new method. 428 matched spots were found using the improved method compared to 208 matched spots using conventional methodology. For the 174 spots that were matched between the two DIGE experiments, the average CV's of spot volumes were also significantly lower, at 0.20 for the new method compared to 0.24 for the conventional method (p < 0.001).  相似文献   

8.
The localization of polymeric composition in samples prepared for matrix‐assisted laser desorption/ionization (MALDI) analysis has been investigated by imaging mass spectrometry. Various matrices and solvents were used for sample spot preparation of a polybutyleneglycol (PBG 1000). It was shown that in visibly homogeneous spots, prepared using the ‘dried droplet’ method, separation between matrix and polymer takes place. Moreover, using α‐cyano‐4‐hydroxycinnamic acid (CCA) as matrix and methanol as solvent molecular mass separation of the polymer homologues in the spots was detectable. In contrast to manually spotted samples, dry spray deposition results in homogeneous layers showing no separation effects. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
In this work, a convenient method for the therapeutic monitoring of seven common antipsychotic drugs in “dried plasma spot” samples has been developed. It is based on the liquid chromatography tandem mass spectrometry technique, operating in multiple reaction monitoring mode, and a straightforward procedure for the simultaneous extraction of all antipsychotics in a single step, with high extraction yield. The method was fully validated with proper accuracy, precision, selectivity and sensitivity, for all the drugs. Limits of quantification were 0.12, 1.09, 1.46, 1.47, 5.70, 1.32, 1.33 µg/L for haloperidol, aripiprazole, olanzapine, quetiapine, clozapine, risperidone, and paliperidone, respectively. Accuracy, intra‐ and interday precision values were <10% for all drugs at all concentration levels examined. The method was tested in the analysis of 30 plasma samples from real patients for each drug. The proposed analytical approach, by combining practical and logistical advantages of microsampling with liquid chromatography tandem mass spectrometry analytical performance, could offer an ideal strategy for accurate and timely therapeutic drug monitoring of antipsychotic drugs in most clinical settings, even in remote centers and/or in out‐patient settings, bringing so many potential improvements in psychiatric patient care.  相似文献   

10.
An approach has been developed for the quantitative determination of concentrations of centchroman ( I), a nonsteroidal once‐a‐week oral contraceptive, and its major metabolite (7‐desmethyl centchroman, II) using dried blood spots (DBS) on paper, rather than conventional plasma samples. The assay employed simple solvent extraction of the DBS sample circle (6 mm) requiring small blood volumes (30 μL) followed by reversed‐phase HPLC separation, combined with multiple reaction monitoring mass spectrometric detection. The calibration plot in matrix using d ‐trans‐hydroxy chroman as internal standard (IS) was linear (r2 = 0.998) over ranges of 1.5–240 and 4.5–720 ng/mL for I and II, respectively. The recoveries of both I and II were always >60% with quantification limits (signal‐to‐noise ratio = 10) of 1.5 and 4.5 ng/mL for I and II, respectively. The intra‐day and inter‐day precision (%RSD) and accuracy (%bias) variations in blood spots for both I and II were better than 13%. Moreover, both I and II were stable in DBS for at least 3 months when stored at room temperature. The developed method was successfully applied to the pharmacokinetic interaction study after oral administration of centchroman with and without co‐administration of carbamazepine in female Sprague–Dawley rats using serial sampling and results were comparable with the plasma concentrations reported earlier. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
The torch wall is cooled largely by air passing through a cooling jacket added to the outside of a Fassel torch. The plasma is viewed axially through a cooled cone interface centered on the axial channel. The outer argon gas flow can be reduced to 7 l min−1 with no compromise in performance or torch lifetime. The plasma exhibits the same ‘robustness index’ and interference effects from Na as the conventional, high-flow ICP supplied with the particular spectrometer used. Detection limits (DL) for lines at ∼200 nm are poorer by approximately a factor of two, while those for lines at ∼400 nm are actually better than values typically seen for the same lines by axial viewing of a conventional, high-flow ICP.  相似文献   

12.
A method has been developed and validated for the quantification of ramoplanin, a 2554 Da peptide antibiotic, in human dried blood spots using high‐performance liquid chromatography with tandem mass spectrometric detection. The validation data meet FDA acceptance criteria for bioanalytical assays and cover the quantification of ramoplanin over the range 10–5000 ng/mL. The assay determines ramoplanin at the same lower limit of quantification as conventional liquid sample methods. Dried blood spot analysis provides an approach for quantification of peptide therapeutics and delivers significant benefits for sample collection and handling and also sample cleanup over conventional plasma and serum assays. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The application of liquid chromatography/ion-trap mass spectrometry for simultaneous quantification of multiple drugs and detection of their metabolites for in vitro experiments was reported recently. In the current study, the use of these techniques was extended to in vivo pharmacokinetic (PK) studies of alpha-1a antagonists. In combination with limited time-point PK, greatly increased throughput was demonstrated for the in vivo screening and investigation of in vivo-in vitro correlation. In addition to quantitative analyses, the technique allowed simultaneous detection of major in vivo metabolites without having to reanalyze the plasma samples. The drugs were individually dosed in mice intravenously via tail vein injection and the blood samples were collected 5 min and 2 h after dosing. After the plasma samples for the different drugs had been prepared separately, they were pooled for cassette analysis. The concentrations of five test compounds in the plasma samples at 2 h ranged from 36-1062 ng/mL, whereas their 5-min plasma levels were similar. From the same cassette analysis, major metabolites in the samples were also detected simultaneously through the interpretation of full-scan mass spectra. The metabolite identification confirmed the results from a previous report that the major sites of metabolism are hydroxylation of the phenyl ring not bearing the alkylsulfonamide substitutent, piperidine N-dealkylation, and N-demethylation of the alkylsulfonamide group.  相似文献   

14.
Major depressive disorder is a severe, life‐threatening and highly prevalent psychiatric disorder. A high percentage of people suffering from depression are characterized by hyperactivity of the hypothalamic–pituitary–adrenal axis, resulting in plasma glucocorticoid (cortisol in human and corticosterone in rodent) elevations. Glucocorticoid is a critical molecule in the onset of pathology of depression. A simple, highly sensitive and specific method based on ultra‐fast liquid chromatography–tandem mass spectrometry method has been developed for the quantitation of corticosterone in mouse plasma for the first time, which provides technical support for the high‐throughput measurement for clinical determination of corticosterone in biological samples. Samples were spiked with methanol to precipitate the protein, and then chromatographed on an Agilent Zorbax Eclipse Plus C18 (100 × 2.1 mm,1.8 µm) column by linear gradient elution with methanol and 0.1% formic acid as the mobile phase within 5 min. The detection of corticosterone was performed on ultra‐fast liquid chromatography–triple quadrupole tandem mass spectrometry in the positive ion. The ions [M + H]+ m/z 347.2 → m/z 311.1 for corticosterone and [M + H]+ m/z 363.2 → m/z 327.2 for hydrocortisone (internal standard) were used for quantitative determination. The lower quantification limit for corticosterone was 1 ng/mL. The validated method was successfully applied to the quantitation of corticosterone in mouse plasma. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Multiple reaction monitoring (MRM) is one of the most powerful modes of analysis in liquid chromatographic tandem mass spectrometry for quantification of low‐concentration metabolites in biological samples. The advances in mass spectrometry enabled the development of high‐resolution multiple reaction monitoring (MRMHR) and became suitable for the more specific analysis of target analytes. This is important for lipidomic studies and contributes in the medical and pharmaceutical fields, primarily in investigating alterations in cells or fluids relevant to various diseases. Therefore, this work proposes the development of the MRMHR method for quantification of circulating steroids. We focused on the determination of corticosterone, 11‐dehydrocorticosterone (11‐DHC), cortisol, cortisone, aldosterone, and progesterone concentration in serum, by using 129sv male mice exposed to chronic unpredictable stress to validate the quantification. The method was conducted according to the ANVISA normative, adopting a coefficient of variation, as well as relative standard deviation and relative error lower than 15% in linearity, intraday and interday precision, and accuracy. For cortisol, corticosterone, and their inert metabolites (cortisone and 11‐DHC), the lower limit of quantification was 3.9 ng· mL−1, while that for progesterone and aldosterone was 7.8 and 15.6 ng· mL−1, respectively. MRMHR analysis showed that animals submitted to stressors have 4.5 times more corticosterone in their serum than nonstressed mice. However, 11‐DHC concentration does not vary significantly in response to stress for these animals. The results indicate that the method can be applied for quantification of steroids in several biological samples, such as human plasma.  相似文献   

16.
The potential utility of an imaging agent for the detection of hepatic copper was investigated in a Wilson’s disease animal model. Solid-phase peptide synthesis was used to construct an imaging agent which consisted of a copper-binding moiety, taken from the prion protein, and a gamma ray-emitting indium radiolabel. Long–Evans Cinnamon (LEC) rats were used for the Wilson’s disease animal model. Our evaluation methodology consisted of administering the indium-labeled agent to both LEC and genetically healthy Long–Evans (LE) cohorts via a tail vein injection and following the pharmacokinetics with single-photon emission computed tomography (SPECT) over the course of an hour. The animals were then sacrificed and their livers necropsied. An additional control agent, lacking the copper-binding moiety, was used to gauge whether any change in the hepatic uptake might be caused by other physiological differences between the two animal models. LEC rats injected with the indium-labeled agent had roughly double the amount of hepatic radioactivity as compared to the healthy control animals. The control agent, without the copper-binding moiety, displayed a hepatic signal similar to that of the control LE animals. Additional intraperitoneal spiking with CuSO4 in C57BL/6 mice also found that the pharmacokinetics of the indium-labeled, prion-based imaging agent is profoundly altered by exposure to in vivo pools of extracellular copper. The described SPECT application with this compound represented a significant improvement over a previous MRI application using the same base peptide sequence.  相似文献   

17.
A new electrochemical sensor was fabricated via TiO2 nanoparticles onto a carbon paste electrode. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) studied the response of the modified electrode toward codeine. The effects of pH, modifier amount, pulse amplitude, and scan rate of potential have been examined. Using DPV, we could measure simultaneously codeine and acetaminophen in one mixture. The detection limits of 0.018 and 0.050 µmol L?1 were achieved for codeine and acetaminophen, respectively. The electrooxidation pathway, transfer coefficient, and standard rate constant, are estimated. The proposed voltammetric sensor was successfully applied to determination of codeine and acetaminophen in human plasma serum samples.  相似文献   

18.
High performance capillary electrophoresis using a buffer solution containing micelles of ionic surfactant (e.g. sodium dodecyl sulfate), called micellar electrokinetic chromatography, has been applied to the separation and simultaneous determination of creatinine and uric acid in human plasma and urine. The sample was introduced into the capillary by siphoning an appropriate volume of untreated plasma or urine spiked with an internal standard (antipyrine). Creatinine, uric acid, and antipyrine were separated mutually, and from other endogeneous components within 18 min. The calibration plots showed good linearity (correlation coefficient > 0.999) over the concentration range needed for clinical analysis. Standard addition tests indicated that the recoveries of creatinine and uric acid from urine samples ranged, respectively, from 97 % to 106 % and 97.4 % to 108 % with a coefficient of variation (C.V.) of 3.3 % (n = 5), and that those from plasma samples ranged, respectively, from 100 % to 112 % and 101 % to 107 % with a C.V. of 4.7 % (n = 5). The results were in agreement with those obtained by conventional methods.  相似文献   

19.
An isocratic high-performance liquid chromatographic method has been developed for the measurement of serotonin, 5-hydroxyindolacetic and homovanillic acids in dried blood spots and in platelet poor and rich plasma samples. Analyses were carried out on a C18 reversed-phase column using a mobile phase composed of 13% methanol and 87% aqueous citrate buffer, containing octanesulfonic and ethylendiaminotetracetic acids. Coulometric detection was used, setting the guard cell at +0.100 V, the first analytical cell at −0.200 V and the second analytical cell at +0.400 V. For the pre-treatment of biological samples a novel solid-phase extraction procedure, based on mixed-mode reversed-phase – strong anion exchange Oasis cartridges, was implemented. Extraction yields of the analytes from all these matrices were satisfactory, being always higher than 89.0%. The calibration curve was linear over the on-column concentration range of 0.1–22.5 ng mL−1 for serotonin and 5-hydroxyindolacetic acid and of 0.25–22.5 ng mL−1 for homovanillic acid. The sensitivity was good with a limit of detection of 0.05 ng mL−1 for serotonin and 5-hydroxyindolacetic acid and 0.12 ng mL−1 for homovanillic acid. Results were also satisfactory in terms of precision, selectivity and accuracy. The analytical method was successfully applied to human platelet poor and rich plasma samples and to dried blood spots from volunteers and psychiatric patients.  相似文献   

20.
本文建立了小鼠灌胃染料木素单体后血浆中水溶性染料木素代谢产物和染料木素脂肪酸酯的分离及测定方法。血浆样品经乙酸乙酯萃取后上Sephadex LH-20柱,分别用体积比1∶1的正己烷/氯仿和甲醇洗脱,染料木素脂肪酸酯用脂肪酶酶解后转化成染料木素,水溶性代谢产物用葡萄糖醛酸酶及硫酸酯酶水解成染料木素,然后采用液相色谱串联飞行时间质谱(Q-TOF LC/MS)检测染料木素。血浆中染料木素在10~10000 ng/mL范围内线性关系良好,检测限为1 ng/mL。10批次小鼠血浆中水溶性代谢产物平均为526.006 ng/mL,染料木素脂肪酸酯平均为58.976 ng/mL。采用SephadexLH-20柱具有良好的分离效果,脂肪酶水解染料木素脂肪酸酯稳定、专一性强,用Q-TOF LC/MS检测染料木素快速、灵敏。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号