首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Utilizing first principle calculations, a novel Si64 silicon allotrope in the I41/amd space group with tetragonal symmetry (denoted as t-Si64 below) is proposed in this work. In addition, also its structural, anisotropic mechanical, and electronic properties along with its minimum thermal conductivity κmin were predicted. The mechanical and thermodynamic stability of t-Si64 were evaluated by means of elastic constants and phonon spectra. The electronic band structure indicates that t-Si64 is an indirect band gap semiconductor with a band gap: 0.67 eV (primitive cell) compared to a direct band gap of 0.70 eV with respect to a conventional cell. The minimum thermal conductivity of t-Si64 (0.74 W cm−1 K−1) is much smaller than that of diamond silicon (1.13 W cm−1 K−1). Therefore, Si−Ge alloys in the I41/amd space group are potential thermoelectric materials.  相似文献   

2.
曹爱华  吴波  甘利华 《化学学报》2019,77(5):455-460
基于密度泛函理论计算预测了一种新型碳同素异形体(Pc-carbon).声子色散谱和弹性常数计算证实了Pc-carbon的动力学和力学稳定性.计算结果显示,Pc-carbon是弹性各向异性的,其维氏硬度达到87.6 GPa.应力应变计算结果表明,Pc-carbon的理想拉伸强度和剪切强度分别为65.8 GPa和56.5 GPa,进一步证实了其超硬特性.电子结构计算结果表明,Pc-carbon是带宽为0.99 eV的半导体.  相似文献   

3.
4.
5.
6.
The role that silica surface could have played in prebiotic chemistry as a catalyst for peptide bond formation has been addressed at the B3LYP/6-31+G(d,p) level for a model reaction involving glycine and ammonia on a silica cluster mimicking an isolated terminal silanol group present at the silica surface. Hydrogen-bond complexation between glycine and the silanol is followed by the formation of the mixed surface anhydride Si(surf)-O-C(=O)-R, which has been suggested in the literature to activate the C=O bond towards nucleophilic attack by a second glycine molecule, here simulated by the simpler NH3 molecule. However, B3LYP/6-31+G(d,p) calculations show that formation of the surface mixed anhydride Si(surf)-O-C(=O)-R is disfavoured (delta(r)G298 approximately 6 kcal mol(-1)), and that the surface bond only moderately lowers the free-energy barrier of the nucleophilic attack responsible for peptide bond formation (deltaG298(double dagger) approximately 48 kcal mol(-1)) in comparison with the uncatalysed reaction (deltaG298(double dagger) approximately 52 kcal mol(-1)). A further decrease of the free-energy barrier of peptide bond formation (deltaG298(double dagger) approximately 41 kcal mol(-1)) is achieved by a single water molecule close to the reaction centre acting as a proton-transfer helper in the activated complex. A possible role of strained silica surface defects on the formation of the surface mixed anhydride Si(surf)-O-C(=O)-R has also been addressed.  相似文献   

7.
8.
The relative stability of graphite and diamond is revisited with hybrid density functional theory calculations. The electronic energy of diamond is computed to be more negative by 1.1 kJ mol?1 than that of graphite at T=0 K and in the absence of external pressure. Graphite gains thermodynamic stability over diamond at 298 K only because of the differences in the zero‐point energy, specific heat, and entropy terms for both polymorphs.  相似文献   

9.
What accounts for a particular chiral selection in the case of a few sugars of prebiotic relevance, thereby mirroring the asymmetry observed in nature? By using first‐principles calculations, the generation of pentoses from glycolaldehyde (the initial product of the autocatalytic formose reaction), which has been detected in outer space), has been modeled by using L ‐Val‐L ‐Val as a primeval catalyst. Our theoretical study provides insight into the mechanism of this reaction and satisfactorily explains a few key molecular events. Our rationale agrees with the reported experimental data and shows that the D ‐configuration is only favored for ribose. L ‐pentoses are usually favored in the presence of L ‐configured dipeptides, as observed experimentally, although no chiral selection could be observed in the case of xylose. These results confirm that a prebiotic sugar soup could be fine‐tuned in the presence of shorter peptides as catalysts and that D ‐ribose would have also resulted in an advantageous imbalance for further amplification and chemical evolution.  相似文献   

10.
载铜活性炭吸附一氧化碳的密度泛函理论计算   总被引:3,自引:0,他引:3  
黎军  马正飞  刘晓勤  姚虎卿 《化学学报》2005,63(10):903-908
应用密度泛函理论和相对论有效核势方法, 用C16H10, C13H9, C12H12原子簇模型模拟活性炭表面, 计算得到了CO在载铜活性炭上的吸附位、吸附构型和吸附能. 研究表明: 载铜活性炭吸附CO的过程, 本质上是Cu(I)通过σ-π配键与CO络合, 形成Cu—C键的过程. 载铜活性炭对CO的络合吸附能在50~60 kJ/mol之间, 远大于活性炭对CO的物理吸附能(9.15 kJ/mol), 因而络合吸附更稳定, 选择性也更高. Cu(I)选择吸附在活性炭表面的顶位和桥位, 一个Cu(I)至多可以吸附一个到两个CO分子, 但吸附一个CO比吸附两个CO稳定.  相似文献   

11.
Drying‐tube‐shaped single‐walled carbon nanotubes (SWCNTs) with multiple carbon ad‐dimer (CD) defects are obtained from armchair (n,n,m) SWCNTs (n=4, 5, 6, 7, 8; m=7, 13). According to the isolated‐pentagon rule (IPR) the drying‐tube‐shaped SWCNTs are unstable non‐IPR species, and their hydrogenated, fluorinated, and chlorinated derivatives are investigated. Interestingly, chemisorptions of hydrogen, fluorine, and chlorine atoms on the drying tube‐shaped SWCNTs are exothermic processes. Compared to the reaction energies for binding of H, F, and Cl atoms to perfect and Stone–Wales‐defective armchair (5,5) nanotubes, binding of F with the multiply CD defective SWCNTs is stronger than with perfect and Stone–Wales‐defective nanotubes. The reaction energy for per F2 addition is between 85 and 88 kcal mol?1 more negative than that per H2 addition. Electronic structure analysis of their energy gaps shows that the CD defects have a tendency to decrease the energy gap from 1.98–2.52 to 0.80–1.17 eV. After hydrogenation, fluorination, and chlorination, the energy gaps of the drying‐tube‐shaped SWCNTs with multiple CD defects are substantially increased to 1.65–3.85 eV. Furthermore, analyses of thermodynamic stability and nucleus‐independent chemical shifts (NICS) are performed to analyze the stability of these molecules.  相似文献   

12.
13.
14.
15.
16.
DFT (B3LYP, M06‐2X) and MP2 methods are applied to the design of a wide series of the potentially 10‐C‐5 neutral compounds based on 6‐azabicyclotetradecanes: XC1(YCH2CH2CH2)3N 1 – 3 , XC1(YC6H4CH2)3N 4 – 6 , XC1[Y(tBuC6H3)CH2]3N 7 – 9 and carbatranophanes 10 – 25 (X=Me, F, Cl; Y=O, NH, CH2, SiH2; Z=O, CH2, (CH2)2, (CH2)3). Carbatranophanes 10 – 25 are characterized by a sterical compression of their axial 3c–4e XC1←N fragment with respect to that in the parent molecules 4 – 6 . A magnitude of the revealed effect depends on a valence surrounding of the central carbon atom C1, the size and the nature of the side chains (Z) that link the “π‐electron cap” with a tetradecane backbone. This circumstance allowed us to obtain 10‐C‐5 structures with the configuration of the bonds around the C1 atom, which corresponds to practically an ideal trigonal bipyramid. In these compounds, the values of the covalence ratio χ of approximately 0.6 for the coordination C1←N contacts with a covalent contribution (atoms in molecules (AIM) and natural bond orbital (NBO)) are record in magnitude. These values lie close to a low limit of the interval of the χSi←D change (0.6–0.9) being characteristic of the dative and ionic‐covalent (by nature) Si←D bond (D=N, O) in the known 10‐Si‐5 silicon compounds.  相似文献   

17.
Density functional theory (DFT) and time‐dependent density functional theory (TDDFT) calculations were performed with the basis sets 6‐31G for DFT and 6‐31G(d), 6‐31+G(d,p) for TDDFT on pure graphene nanoribbon (GNR) C30H14 and metal‐decorated C29H14‐X (MGNRs; X=Ni, Fe, Ti, Co+, Al+, and Cu+). The metal/carbon ratio (X:C 3.45 %) and the doping site were fixed. Electronic properties, that is, the dipole moment, binding energy, and HOMO–LUMO gaps, were calculated. The absorption and emission properties in the visible range (λ=400–720 nm) were determined. Optical gaps, absorption and emission wavelengths, oscillator strengths, and dominant transitions were calculated. Pure graphene was found to be the most stable form. However, of the MGNRs, C29H14?Co+ and C29H14?Al+ were found to be the most and least stable, respectively. All GNRs were found to have semiconducting nature. The optical absorption of pure graphene undergoes a shift on metal doping. Emission from the pure graphene followed Kasha′s rule, unlike the metal‐doped GNRs.  相似文献   

18.
Current progress in modern electrocatalysis research is spurred by theory, frequently based on ab initio thermodynamics, where the stable reaction intermediates at the electrode surface are identified, while the actual energy barriers are ignored. This approach is popular in that a simple tool is available for searching for promising electrode materials. However, thermodynamics alone may be misleading to assess the catalytic activity of an electrochemical reaction as we exemplify with the chlorine evolution reaction (CER) over a RuO2(110) model electrode. The full procedure is introduced, starting from the stable reaction intermediates, computing the energy barriers, and finally performing microkinetic simulations, all performed under the influence of the solvent and the electrode potential. Full kinetics from first‐principles allows the rate‐determining step in the CER to be identified and the experimentally observed change in the Tafel slope to be explained.  相似文献   

19.
We designed a cyclic borane (B6H12) molecule with a benzene‐like structure, in which the six B atoms are located in the same plane. Three methods of B3LYP, MP2, and CCSD with the 6‐311++G** basis were used to investigate its structure, electronic property, and stability. Next, we calculated the stability and electronic property of three hydroboron derivatives with fused rings of B10H18, B14H24, and B16H26. Finally, we investigated three types of novel two‐dimensional infinite hydroboron sheets with diborane as a building block. The results of the phonon spectra ensure the dynamic stability of these predicted structures. Furthermore, the three types of hydroboron sheets are shown to have different band gap energies of less than 3.0 eV. Some investigations on the optical properties have also been performed. The predicted sheets are candidates for semiconductors, whose band gap energy can be tuned by the positions of the bridge hydrogen atoms in the sheets.  相似文献   

20.
Recently, Clyburne and co‐workers [Science, 2014 , 344, 75–78] reported the novel synthesis of the elusive cyanoformate anion, NCCO2?. The stability of this anion is dependent on the dielectric constant of the local environment (polarity‐switchable solvent): it is stable in low‐polarity media and unstable in high‐polarity solvents; hence, capturing and then releasing CO2. The possibility of extending such behaviour to other anions is explored herein. Specifically, the CO2 capture process is studied for 26 anions in the gas phase and 3 distinct solvents (water, tetrahydrofuran, and toluene) by using the polarisable continuum model. Calculations are performed with the M06‐2X and B3LYP‐D3 density functionals and the aug‐cc‐pVTZ basis set. The design of new CO2 complexes with the anion, which can be formed or destroyed on demand by changing the solvent, is possible; the results for the alkoxylate and thiolate anions are especially promising. The nature of the substituents connected to the atom that bonds to CO2 in the anion is crucial in modulating the relative stability of the products—a key point for reversibility in the CO2 capture process. A moderate interaction for the anion–CO2 adduct—about 10 kcal mol?1 relative free energy with respect to the isolated reactants in the gas phase—and a relevant effect in the dielectric constant of the local environment are also key ingredients to achieve solvent dependency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号