首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Group 6 transition metal dichalcogenides (TMDs), such as MoS2 and WS2 have been extensively studied for various applications while few studies have delved into other TMDs such as platinum dichalcogenides. In this work, layered crystalline and amorphous platinum disulfide (PtS2) were synthesized, characterised and their fundamental electrochemical properties were investigated. Both materials exhibited inherent oxidation and reduction reactions which would limit their operating potential window for sensing applications. Amorphous phase materials are considered to be promising electrocatalysts due to the porous, and nanostructured morphology with high concentration of unsaturated active sites. The electrocatalytic performances towards oxygen reduction (ORR) and hydrogen evolution reactions (HER) of crystalline and amorphous PtS2 were analysed. Amorphous PtS2 was found to exhibit superior electrocatalytic performances towards ORR and HER as compared to crystalline PtS2. For HER, amorphous and crystalline PtS2 have overpotential values of 0.30 V and 0.70 V (vs. RHE) at current density of 10 mA cm−2, respectively. The influence of electrochemical reduction pre-treatment on their catalytic behaviours was also investigated. Electrochemical reduction pre-treatment on both crystalline and amorphous PtS2 removed the oxidized sulfate groups and increased the proportion of Pt0 oxidation state which exposed more catalytic sites. As such, these materials were activated and displayed improved ORR and HER performances. Electrochemically reduced amorphous PtS2 outperformed the untreated counterparts and exhibited the best HER performance with overpotential of 0.17 V (vs. RHE) at current density of −10 mA cm−2. These findings provide insights into the electrochemical properties of noble metal PtS2 in both crystalline and amorphous states which can be activated by electrochemical reduction pre-treatment.  相似文献   

2.
Nanosized Pt-Ni//C electrocatalysts are prepared by methods of liquid-phase synthesis. For the factors that have a direct bearing on the composition of the synthesized materials, the pH, temperature, and composition of a water-organic solvent are studied. The weight percentage of metals in the electrocatalyst, the average size of the formed nanoparticles, and the composition of the Pt-Ni alloy are determined by methods of X-ray diffraction and elemental analyses. The electrocatalytic materials that are characterized by a high platinum content of 25–35 wt % and by a small average diameter of their nanoparticles (3.2–4.5 nm) are produced when using water-ethylene glycol mixtures as solvents. The electrocatalytic activity of the obtained Pt x -Ni/C materials in the oxygen electroreduction reaction in a 0.5 M solution of orthophosphoric acid is studied by the potentiodynamic method. The potentiodynamic study makes it possible to single out electrocatalysts whose specific characteristics are superior to those of commercial Pt/C electrocatalyst TEC10V50E.  相似文献   

3.
The continuous excessive usage of fossil fuels has resulted in its fast depletion, leading to an escalating energy crisis as well as several environmental issues leading to increased research towards sustainable energy conversion. Electrocatalysts play crucial role in the development of numerous novel energy conversion devices, including fuel cells and solar fuel generators. In particular, high-efficiency and cost-effective catalysts are required for large-scale implementation of these new devices. Over the last few years, transition metal chalcogenides have emerged as highly efficient electrocatalysts for several electrochemical devices such as water splitting, carbon dioxide electroreduction, and, solar energy converters. These transition metal chalcogenides exhibit high electrochemical tunability, abundant active sites, and superior electrical conductivity. Hence, they have been actively explored for various electrocatalytic activities. Herein, we have provided comprehensive review of transition-metal chalcogenide electrocatalysts for hydrogen evolution, oxygen evolution, and carbon dioxide reduction and illustrated structure–property correlation that increases their catalytic activity.  相似文献   

4.
《中国化学快报》2023,34(3):107571
High entropy oxides (HEOs) have attracted extensive attention of researchers due to their remarkable properties. The electrocatalytic activity of electrocatalysts is closely related to the reactivity of their surface atoms which usually shows a positive correlation. Excellenet stability of HEOs leads to their surface atoms with relative poor reactivity, limiting the applications for electrocatalysis. Therefore, it is significant to activate surface atoms of HEOs. Constructing amorphous structure, introducing oxygen defects and leaching are very effective strategies to improve the reactivity of surface atoms. Herein, to remove chemical inert, low-crystallinity (Fe, Co, Ni, Mn, Zn)3O4 (HEO-Origin) nanosheets with abundant oxygen vacancies was synthesized, showing an excellent catalytic activity with an overpotential of 265 mV at 10 mA/cm2, which outperforms as-synthesized HEO-500°C-air (335 mV). The excellent catalytic performance of HEO-Origin can be attributed to high activity surface atoms, the introduction of oxygen defects efficiently altered electron distribution on the surface of HEO-Origin. Apart from, HEO-Origin also exhibits an outstanding electrochemical stability for oxygen evolution reaction (OER).  相似文献   

5.
电催化水分解产氢作为一种有前途的制氢技术被全世界研究者广泛关注.然而,此领域仍然缺少一种高效、无污染的催化剂,以降低能耗,提升反应动力学,进而推进电解水的实际应用.近年来研究发现,具有短程有序、长程无序特征的非晶纳米材料在电解水领域表现出极其优异的性能.有趣的是,固有的无序结构赋予了非晶纳米材料丰富的高活性位点.鉴于此...  相似文献   

6.
The implementation of electrochemical water splitting demands the development and application of electrocatalysts to overcome sluggish reaction kinetics of hydrogen/oxygen evolution reaction (HER/OER). Hollow nanostructures, particularly for hollow heterostructured nanomaterials can provide multiple solutions to accelerate the HER/OER kinetics owing to their advantageous merit. Herein, the recent advances of hollow heterostructured nanocatalysts and their excellent performance for water splitting are systematically summarized. Starting by illustrating the intrinsically advantageous features of hollow heterostructures, achievements in engineering hollow heterostructured electrocatalysts are also highlighted with the focus on structural design, interfacial engineering, composition regulation, and catalytic evaluation. Finally, some perspective insights and future challenges of hollow heterostructured nanocatalysts for electrocatalytic water splitting are also discussed.  相似文献   

7.
Transition metal oxides, especially perovskites, have been considered effective electrocatalysts for the oxygen evolution (OER) and oxygen reduction (ORR) reactions in an alkaline solution. Here, a series of lanthanum cobalt rhodium oxide perovskites with the chemical formula LaCo1-xRhxO3 (LCRO, 0.1 ≤ x ≤ 0.70) were prepared through the approach of solid-phase synthesis and their bifunctional electrocatalytic activity was assessed for both the OER and ORR. The crystallinity, morphology, surface, and electrocatalytic features of the LCRO were significantly correlated with the rhodium content. The LaCo0.7Rh0.3O3 electrocatalysts with x = 0.3 showed enhanced electrocatalytic bifunctional performance with a substantially lower OER/ORR onset potential of 1.38/0.73 V vs HRE, smaller Tafel slope (116/90 mV/dec), and low charge-transfer resistance, which is the most efficient catalyst among the other studied ratios and superior to the pristine lanthanum cobalt oxide benchmark electrocatalysts. The LaCo0.7Rh0.3O3 electrode exhibit good bifunctional electrocatalytic behavior and long-term durability with an OER and ORR onset potential gap (ΔE = EOER ? EORR) of only 0.65 V, which could be credited to the enriched oxygen vacancies, lattice expansion and the improved electrical conductivity upon the doping of larger size of Rh ions. The LaCo1-xRhxO3 catalysts are obtained from abundant materials that have the potential of highly-active bifunctional OER and ORR electrocatalysts.  相似文献   

8.
Photo/electrocatalysis of water (H2O) splitting and CO2 reduction reactions is a promising strategy to alleviate the energy crisis and excessive CO2 emissions. For the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and CO2 reduction reaction (CO2RR) involved, the development of effective photo/electrocatalysts is critical to reduce the activation energy and accelerate the sluggish dynamics. Polyoxometalate (POM)-based compounds with tunable compositions and diverse structures are emerging as unique photo/electrocatalysts for these reactions as they offer unparalleled advantages such as outstanding solution and redox stability, quasi-semiconductor behaviour, etc. This Minireview provides a basic introduction related to photo/electrocatalytic HER, OER and CO2RR, followed by the classification of pristine POM-based compounds toward different catalytic reactions. Recent breakthroughs in engineering POM-based compounds as efficient photo/electrocatalysts are highlighted. Finally, the advantages, challenges, strategies and outlooks of POM-based compounds on improving photo/electrocatalytic performance are discussed.  相似文献   

9.
《Journal of Energy Chemistry》2017,26(6):1094-1106
The explore and development of electrocatalysts have gained significant attention due to their indispensable status in energy storage and conversion systems, such as fuel cells, metal–air batteries and solar water splitting cells. Layered double hydroxides(LDHs) and their derivatives(e.g., transition metal alloys, oxides, sulfides, nitrides and phosphides) have been adopted as catalysts for various electrochemical reactions, such as oxygen reduction, oxygen evolution, hydrogen evolution, and CO_2 reduction, which show excellent activity and remarkable durability in electrocatalytic process. In this review, the synthesis strategies, structural characters and electrochemical performances for the LDHs and their derivatives are described. In addition, we also discussed the effect of electronic and geometry structures to their electrocatalytic activity. The further development of high-performance electrocatalysts based on LDHs and their derivatives is covered by both a short summary and future outlook from the viewpoint of the material design and practical application.  相似文献   

10.
11.
Crystal phase engineering is a powerful strategy for regulating the performance of electrocatalysts towards many electrocatalytic reactions, while its impact on the nitrogen electroreduction has been largely unexplored. Herein, we demonstrate that structurally ordered body‐centered cubic (BCC) PdCu nanoparticles can be adopted as active, selective, and stable electrocatalysts for ammonia synthesis. Specifically, the BCC PdCu exhibits excellent activity with a high NH3 yield of 35.7 μg h?1 mg?1cat, Faradaic efficiency of 11.5 %, and high selectivity (no N2H4 is detected) at ?0.1 V versus reversible hydrogen electrode, outperforming its counterpart, face‐centered cubic (FCC) PdCu, and most reported nitrogen reduction reaction (NRR) electrocatalysts. It also exhibits durable stability for consecutive electrolysis for five cycles. Density functional theory calculation reveals that strong orbital interactions between Pd and neighboring Cu sites in BCC PdCu obtained by structure engineering induces an evident correlation effect for boosting up the Pd 4d electronic activities for efficient NRR catalysis. Our findings open up a new avenue for designing active and stable electrocatalysts towards NRR.  相似文献   

12.
Rational design and synthesis of efficient electrocatalysts are important constituents in addressing the currently growing provision issues. Typical reactions, which are important to catalyze in this respect, include CO2 reduction, the hydrogen and oxygen evolution reactions as well as the oxygen reduction reaction. The most efficient catalysts known up‐to‐date for these processes usually contain expensive and scarce elements, substantially impeding implementation of such electrocatalysts at a larger scale. Metal‐organic frameworks (MOFs) and their derivatives containing affordable components and building blocks, as an emerging class of porous functional materials, have been recently attracting a great attention thanks to their tunable structure and composition together with high surface area, just to name a few. Up to now, several MOFs and MOF‐derivatives have been reported as electrode materials for the energy‐related electrocatalytic application. In this review article, we summarize and analyze current approaches to design such materials. The design strategies to improve the Faradaic efficiency and selectivity of these catalysts are discussed. Last but not least, we discuss some novel strategies to enhance the conductivity, chemical stability and efficiency of MOF‐derived electrocatalysts.  相似文献   

13.
Electrocatalytic reduction of CO2 into usable chemicals is a promising path to address climate change and energy challenges. Herein, we demonstrate the synthesis of unique coinage metal (Cu, Ag, and Au) nanodendrites (NDs) via a facile galvanic replacement reaction (GRR), which can be effective electrocatalysts for the reduction of CO2 in an ethanolamine (EA) solution. Each metal ND surface was directly grown on glassy-carbon (GC) substrates from a mixture of Zn dust and the respective precursor solution. The electrocatalytic activities of the synthesized ND surfaces were optimized for CO2 reduction in EA solution by varying their composition. It was determined that a 0.05 mol fraction of EA exhibited the highest catalytic activity for all metal NDs. Linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) techniques showed that metal-ND electrodes possessed higher current densities, lower onset potentials and lower charge-transfer resistances for CO2 reduction than their smooth polycrystalline electrode counterparts, indicating improved CO2 reduction catalytic activity. It was determined, using FTIR and NMR spectroscopy, that formate was produced as a result of the CO2 reduction.  相似文献   

14.
钙钛矿型稀土氧化物价格低廉、结构可控、性质多样,在催化领域有着广阔的应用前景。本文从钙钛矿型稀土氧化物的结构类型、合成方法及电化学催化反应出发,总结了传统高温合成方法、火焰喷雾法、静电纺丝法和脉冲激光沉积法等几种最常用的合成方法,以及提升其氧析出反应(OER),氢析出反应(HER)和氧还原反应(ORR)催化能力的典型有效方法,概述了近年来钙钛矿型稀土氧化物在电解水、金属空气电池和固体氧化物燃料电池等能源转化储存装置的主要研究进展,进而对钙钛矿型稀土氧化物在能源转化储存领域的应用进行了展望。  相似文献   

15.
Electrolysis of water is a promising way to produce hydrogen fuel in large scale. The commercialization of this technology requires highly efficient non‐noble metal electrocatalysts to decease the energy input for the hydrogen evolution reaction (HER). In this work, a novel nanowire structured molybdenum‐tungsten bimetallic oxide (CTAB‐D‐W4MoO3) is synthesized by a simple hydrothermal method followed with post annealing treatment. The obtained metal oxides feature with enhanced conductivity, rich oxygen vacancies and customized electronic structure. As such, the composite electrocatalyst exhibits excellent electrocatalytic performance for HER in an acidic environment, achieving a large current density of 100 mA cm?2 at overpotential of only 286 mV and a small Tafel slope of 71.2 mV dec?1. The excellent electrocatalytic HER performance of CTAB‐D‐W4MoO3 is attributed to the unique nanowire structure, rich catalytic active sites and promoted electron transfer rate.  相似文献   

16.
The use of water splitting modules is highly desired for the sustainable production of H2 as a future energy carrier. However, the sluggish kinetics and demand of high anodic potential are the bottlenecks for half-the cell oxygen evolution reaction (OER), which severely hamper the overall conversion efficiency. Although transition metal oxides based electrocatalysts have been envisioned as cost-effective and potential contenders for this quest, nevertheless, their low conductivity, instability, and limited number of active sites are among the common impediments that need to be addressed to eventually enhance their inherent catalytic potential for enhanced OER activity. Herein, the controlled assembly of transition metal oxides, that is, Cu@CuOx nanoclusters (NCs, ≈2 nm) and Co@CoOx beaded nanoclusters (BNCs, ≈2 nm), on thiol-functionalized graphene oxide (G-SH) nanosheets is reported to form novel and highly efficient electrocatalysts for OER. The thiol (-SH) functionality was incorporated by selective epoxidation on the surface of graphene oxide (GO) to achieve chemically exfoliated nanosheets to enhance its conductivity and trapping ability for metal oxides in nanoscale dimensions (≈2 nm). During the electrocatalytic reaction, overpotentials of 290 mV and 310 mV are required to achieve a current density of 10 mA cm−2 for BNCs and NCs, respectively, and the catalysts exhibit tremendous long-term stability (≈50 h) in purified alkaline medium (1 m KOH) with no dissolution in the electrolyte. Moreover, the smaller Tafel slopes (54 mV/dec for BNCs and 66 mV/dec for NCs), and a Faradic efficiency of approximately 96 % indicate not only the selectivity but also the tailored heterogeneous electrons transfer (HET) rate, which is required for fast electrode kinetics. It is anticipated that such ultrasmall metal oxide nanoclusters and their controlled assembly on a conducting surface (G-SH) may offer high electrochemical accessibility and a plethora of active sites owing to the drastic decrease in dimensions and thus can synergistically ameliorate the challenging OER process.  相似文献   

17.
工业规模的化石能源消耗导致大气中二氧化碳含量不断增加,CO2转化利用成为人们日益关注的热点问题. 金属铜因其成本低廉、储量丰富,并且具有独特的CO2亲和力能够生成多碳化合物,是目前CO2电还原中研究最为广泛深入的电极材料. 由于阴、阳离子的特征吸附对Cu电极性能有显著影响,并且不同反应体系中对Cu电极上CO2吸附、活化影响也有所不同,因此导致金属Cu电极上报道的电催化活性、产物种类与选择性等都非常宽泛. 基于此,有必要系统地研究各种反应条件对金属Cu电极电催化CO2还原性能的影响. 作者选择了平均粒径为600 nm的商品化金属Cu颗粒作为电还原CO2的催化剂,研究了不同反应条件包括各种常用电解质溶液、KHCO3的浓度以及H型电解池和流动池. 实验结果表明,浓度为0.5 mol·L -1的KHCO3作为电解质溶液具有较好催化活性和较高的产物分电流密度,流动池可以进一步提高主要产物甲酸盐和CO的分电流密度. 本研究工作从反应条件的角度对CO2还原的电催化转化进行了系统研究,有助于理解电解液和反应器等因素对CO2电还原反应过程的影响规律.  相似文献   

18.
可再生能源供应方案包括析氢反应(HER)、析氧反应(OER)、氧还原反应(ORR)和二氧化碳还原反应(CO2RR)等多种反应,电催化剂对这些反应至关重要。到目前为止,已有一系列导电MOFs作为与能源相关电催化电极材料的报道。本文从提高MOFs导电能力和对产物的选择性、增强MOFs的化学稳定性及增加MOFs的反应活性位点等方面介绍了导电MOFs作为电催化剂的设计策略,重点综述了其在能源转化涉及的HER、OER、ORR以及CO2RR方面的应用,并从材料制备和应用需求角度出发, 对高性能导电MOFs材料在电催化领域所面临的挑战和前景进行了展望。  相似文献   

19.
Well‐defined mixed‐metal [CoMn3O4] and [NiMn3O4] cubane complexes were synthesized and used as precursors for heterogeneous oxygen evolution reaction (OER) electrocatalysts. The discrete clusters were dropcasted onto glassy carbon (GC) and indium tin oxide (ITO) electrodes, and the OER activities of the resulting films were evaluated. The catalytic surfaces were analyzed by various techniques to gain insight into the structure‐function relationships of the electrocatalysts’ heterometallic composition. Depending on preparation conditions, the Co‐Mn oxide was found to change metal composition during catalysis, while the Ni–Mn oxides maintained the NiMn3 ratio. XAS studies provided structural insights indicating that the electrocatalysts are different from the molecular precursors, but that the original NiMn3O4 cubane‐like geometry was maintained in the absence of thermal treatment ( 2‐Ni ). In contrast, the thermally generated 3‐Ni develops an oxide‐like extended structure. Both 2‐Ni and 3‐Ni undergo structural changes upon electrolysis, but they do not convert into the same material. The observed structural motifs in these heterogeneous electrocatalysts are reminiscent of the biological oxygen‐evolving complex in Photosystem II, including the MMn3O4 cubane moiety. The reported studies demonstrate the use of discrete heterometallic oxide clusters as precursors for heterogeneous water oxidation catalysts of novel composition and the distinct behavior of two sets of mixed metal oxides.  相似文献   

20.
Electrocatalytic carbon dioxide (CO2) reduction reaction (CO2RR) is a promising process to mitigate the environmental issues caused by CO2, as well as to produce valuable multicarbon (C2+) products. Significant progresses have been made to explore highly efficient Cu-based electrocatalysts for CO2RR in recent years. Adding organic molecules into electrocatalytic systems can tune the CO2 interaction with the electrocatalysts for CO2RR, therefore, the final C2+ products, which are not solely achieved by inorganic modification. In this review, we will summarize the recent progress of the organic molecules participation in CO2 electroreduction to C2+ products on Cu-based electrocatalysts. The applied organic molecules are reviewed based on the heteroatoms (N and S), with the emphasis on their roles in activity and selectivity toward C2+ products. A perspective on the application of organic molecules for efficient and selective CO2RR has been provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号