首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new and efficient synthesis of 8H-benzo[e]phenanthro[1,10-bc]silines from 2-((2-(arylethynyl)aryl)silyl)aryl triflates under palladium catalysis has been developed. The reaction mechanism was experimentally investigated and a catalytic cycle involving C−H/C−H coupling through a new mode of 1,4-palladium migration with concomitant alkene stereoisomerization is proposed.  相似文献   

2.
A novel and unusual palladium-catalyzed [4+2] annulation of cyclopropenes with benzosilacyclobutanes is reported. This reaction occurred through chemoselective Si−C(sp2) bond activation in synergy with ring expansion/insertion of cyclopropenes to form new C(sp2)−C(sp3) and Si−C(sp3) bonds. An array of previously elusive bicyclic skeleton with high strain, silabicyclo[4.1.0]heptanes, were formed in good yields with excellent diastereoselectivity under mild conditions. An asymmetric version of the reaction with a chiral phosphoramidite ligand furnished a variety of chiral bicyclic silaheterocycle derivatives with good enantioselectivity (up to 95.5:4.5 er). Owing to the mild reaction conditions, the good stereoselectivity profile, and the ready availability of the functionalized precursors, this process constitutes a useful and straightforward strategy for the synthesis of densely functionalized silacycles.  相似文献   

3.
RhIII-catalyzed C−H functionalization reaction yielding isoindolinones from aryl hydroxamates and ortho-substituted styrenes is reported. The reaction proceeds smoothly under mild conditions at room temperature, and tolerates a range of functional groups. Experimental and computational investigations support that the high regioselectivity observed for these substrates results from the presence of an ortho-substituent embedded in the styrene. The resulting isoindolinones are valuable building blocks for the synthesis of bioactive compounds. They provide easy access to the natural-product-like compounds, isoindolobenzazepines, in a one-pot two-step reaction. Selected isoindolinones inhibited Hedgehog (Hh)-dependent differentiation of multipotent murine mesenchymal progenitor stem cells into osteoblasts.  相似文献   

4.
Nickel-catalyzed reductive cross-coupling of allylic difluorides with aryl iodides was achieved via allylic C−F bond activation. Based on this protocol, a series of γ-arylated monofluoroalkenes were synthesized in moderate to high yields with high Z-selectivities. Mechanistic studies suggest that the C−I bonds of the aryl iodides and the C−F bonds of the allylic difluorides were cleaved via oxidative addition and β-fluorine elimination, respectively, where the oxidative addition of less reactive C−F bonds was avoided to permit their transformation.  相似文献   

5.
Knowing the structure of catalytically active species/phases and providing methods for their purposeful generation are two prerequisites for the design of catalysts with desired performance. Herein, we introduce a simple method for precise preparation of supported/bulk catalysts. It utilizes the ability of metal oxides to dissolve and to simultaneously precipitate during their treatment in an aqueous ammonia solution. Applying this method for a conventional VOx−Al2O3 catalyst, the concentration of coordinatively unsaturated Al sites was tuned simply by changing the pH value of the solution. These sites affect the strength of V−O−Al bonds of isolated VOx species and thus the reducibility of the latter. This method is also applicable for controlling the reducibility of bulk catalysts as demonstrated for a CeO2−ZrO2−Al2O3 system. The application potential of the developed catalysts was confirmed in the oxidative dehydrogenation of ethylbenzene to styrene with CO2 and in the non-oxidative propane dehydrogenation to propene. Our approach is extendable to the preparation of any metal oxide catalysts dissolvable in an ammonia solution.  相似文献   

6.
We report, herein, a palladium-catalyzed cascade comprising carbopalladation, 1,4-Pd-migration and C(sp2)−C(sp2) bond formation to construct a variety of bis-heterocyclic frameworks in a single operational step. The methodology provides a direct approach to introduce an oxadiazole core at a remote location without any functional group obligation, with moderate to good yields.  相似文献   

7.
The palladium-catalyzed reaction of 4-iodo-2-quinolones with activated alkynes was investigated. Cyclopenta[de]quinoline-2(1 H)-ones and/or phenanthridine-6(5 H)-ones were obtained through [3+2] annulation involving aromatic C−H activation or [2+2+2] annulation involving vinylic C−H activation, respectively. Reasonable mechanisms for the formation of these annulation products have been proposed based on density functional theory calculations.  相似文献   

8.
The coupling of aromatic electrophiles (aryl halides, aryl ethers, aryl acids, aryl nitriles etc.) with nucleophiles is a core methodology for the synthesis of aryl compounds. Transformations of aryl ketones in an analogous manner via carbon–carbon bond activation could greatly expand the toolbox for the synthesis of aryl compounds due to the abundance of aryl ketones. An exploratory study of this approach is typically based on carbon–carbon cleavage triggered by ring-strain release and chelation assistance, and the products are also limited to a specific structural motif. Here we report a ligand-promoted β-carbon elimination strategy to activate the carbon–carbon bonds, which results in a range of transformations of aryl ketones, leading to useful aryl borates, and also to biaryls, aryl nitriles, and aryl alkenes. The use of a pyridine-oxazoline ligand is crucial for this catalytic transformation. A gram-scale borylation reaction of an aryl ketone via a simple one-pot operation is reported. The potential utility of this strategy is also demonstrated by the late-stage diversification of drug molecules probenecid, adapalene, and desoxyestrone, the fragrance tonalid as well as the natural product apocynin.  相似文献   

9.
The so far poorly understood factors controlling the complete meta-selectivity observed in the C−H activation reactions of alkylarenes promoted by aluminyl anions have been explored in detail by means of Density Functional Theory calculations. To this end, a combination of state-of-the-art computational methods, namely the activation strain model of reactivity and energy decomposition analysis, has been applied to quantitatively unveil the origin of the selectivity of the transformation as well as the influence of the associated potassium cation. It is found that the selectivity takes place during the initial nucleophilic addition step where the key LP(Al)→π*(C=C) molecular orbital interaction is more stabilizing for the meta-pathway, which results in a stronger interaction between the reactants along the entire transformation.  相似文献   

10.
An efficient primary-amine-directed, palladium-catalyzed C−H halogenation (X=I, Br, Cl) of phenylalanine derivatives is reported on a range of quaternary amino acid (AA) derivatives thanks to suitable conditions employing trifluoroacetic acid as additive. The extension of this original native functionality-directed ortho-selective halogenation was even demonstrated with the more challenging native phenylalanine as tertiary AA.  相似文献   

11.
A method for the palladium/copper-catalyzed direct acylation of azoles with acyl fluorides is described. This study reports the first examples of acyl fluorides being used as acylation reagents in transition-metal-catalyzed aromatic C−H bond functionalization reactions. Depending on the reaction temperature, decarbonylative coupling may also occur. Mechanistic studies suggest that the cleavage of the aromatic C−H bond, promoted by a copper-phosphine species, is not the rate-limiting step of this acylation.  相似文献   

12.
Owing to their versatile (opto)electronic properties, conjugated polymers have found application in several organic electronic devices. Cross-coupling reactions such as Stille, Suzuki, Kumada couplings, and direct arylation reactions have proved to be effective for their synthesis. More atom-efficient oxidative direct arylation polymerization has also been reported for making homopolymers. However, growing interest toward donor-acceptor polymers has led to the recent emergence of cross-dehydrogenative coupling (CDC) polymerization to synthesize alternating copolymers without any prefunctionalization of monomers. Metal-catalyzed cross-coupling of two simple arenes via double C−H activation, or of an arene with an alkene via oxidative Heck-type reaction have been used so far for CDC polymerization. In this article, we discuss the development of CDC polymerization protocols along with the relevant small molecule CDC reactions for an improved understanding of these reactions.  相似文献   

13.
The gas-phase clusters reaction permits addressing fundamental aspects of the challenges related to C−H activation. The size effect plays a key role in the activation processes as it may substantially affect both the reactivity and selectivity. In this paper, we reviewed the size effect related to the hydrocarbon oxidation by early transition metal oxides and main group metal oxides, methane activation mediated by late transition metals. Based on mass-spectrometry experiments in conjunction with quantum chemical calculations, mechanistic discussions were reviewed to present how and why the size greatly regulates the reactivity and product distribution.  相似文献   

14.
Transition-metal-free regioselecitive C−H arylation of 2-naphthols with diaryliodonium salts has been developed. The reaction proceeds under very simple experimental conditions and affords a range of products with various substitution patterns. The method allows for the incorporation of electron-deficient aryls, which complements well currently existing metal-free aryl–aryl cross-couplings of phenols that have been so far restricted to the introduction of electron-rich aryl moieties. The mechanism of the reaction was studied by means of DFT calculations, demonstrating that the C−C bond formation occurs via a dearomatization of 2-naphthol substrate, followed by a subsequent rearomatization by tautomerization. The computations show that the use of a low polarity solvent and an insoluble inorganic base is key to securing the high selectivity of the C−C coupling over a competing C−O arylation pathway, by preventing the incipient deprotonation of 2-naphthol.  相似文献   

15.
Enantioconvergent catalysis enables the conversion of racemic molecules into a single enantiomer in perfect yield and is considered an ideal approach for asymmetric synthesis. Despite remarkable advances in this field, enantioconvergent transformations of inert tertiary C−H bonds remain largely unexplored due to the high bond dissociation energy and the surrounding steric repulsion that pose unparalleled constraints on bond cleavage and formation. Here, we report an enantioconvergent Pd-catalyzed alkylation of racemic tertiary allylic C−H bonds of α-alkenes, providing a unique approach to access a broad range of enantioenriched γ,δ-unsaturated carbonyl compounds featuring quaternary carbon stereocenters. Mechanistic studies reveal that a stereoablative event occurs through the rate-limiting cleavage of tertiary allylic C−H bonds to generate σ-allyl-Pd species, and the achieved E/Z-selectivity of σ-allyl-Pd species effectively regulates the diastereoselectivity via a nucleophile coordination-enabled SN2′-allylation pathway.  相似文献   

16.
Radical C−H bond functionalization provides a versatile approach for elaborating heterocyclic compounds. The synthetic design of this transformation relies heavily on the knowledge of regioselectivity, while a quantified and efficient regioselectivity prediction approach is still elusive. Herein, we report the feasibility of using a machine learning model to predict the transition state barrier from the computed properties of isolated reactants. This enables rapid and reliable regioselectivity prediction for radical C−H bond functionalization of heterocycles. The Random Forest model with physical organic features achieved 94.2 % site accuracy and 89.9 % selectivity accuracy in the out-of-sample test set. The prediction performance was further validated by comparing the machine learning results with additional substituents, heteroarene scaffolds and experimental observations. This work revealed that the combination of mechanism-based computational statistics and machine learning model can serve as a useful strategy for selectivity prediction of organic transformations.  相似文献   

17.
Herein, a direct C8-arylation reaction of 1-amidonaphthalenes is described. By using diaryliodonium salts as arylating agents, the palladium-catalyzed C−H activation reaction showed perfect C8 regioselectivity and a wide functional group tolerance. In most cases, the desired polyaromatic compounds were isolated in good to excellent yields. To explain the observed regioselectivity, DFT calculations were performed and highlighted the crucial role of the amide directing group. Finally, the utility of this method is showcased by the synthesis of benzanthrone derivatives.  相似文献   

18.
C−H activation is an attractive methodology to increase molecular complexity without requiring substrate prefunctionalization. In contrast to well-established cross-coupling methods, C−H activation is less explored on large scales and its use in the production of pharmaceuticals faces substantial hurdles. However, the inherent advantages, such as shorter synthetic routes and simpler starting materials, motivate medicinal chemists and process chemists to overcome these challenges, and exploit C−H activation steps for the synthesis of pharmaceutically relevant compounds. In this review, we will cover examples of drugs/drug candidates where C−H activation has been implemented on a preparative synthetic scale (range between 355 mg and 130 kg). The optimization processes will be described, and each example will be examined in terms of its advantages and disadvantages, providing the reader with an in-depth understanding of the challenges and potential of C−H activation methodologies in the production of pharmaceuticals.  相似文献   

19.
The increasing pharmaceutical importance of trifluoromethylarenes has stimulated the development of more efficient trifluoromethylation reactions. Tremendous efforts have focused on copper- and palladium-mediated/catalyzed trifluoromethylation of aryl halides. In contrast, no general method exists for the conversion of widely available inert electrophiles, such as phenol derivatives, into the corresponding trifluoromethylated arenes. Reported herein is a practical nickel-mediated trifluoromethylation of phenol derivatives with readily available trimethyl(trifluoromethyl)silane (TMSCF3). The strategy relies on PMe3-promoted oxidative addition and transmetalation, and CCl3CN-induced reductive elimination. The broad utility of this transformation has been demonstrated through the direct incorporation of trifluoromethyl into aromatic and heteroaromatic systems, including biorelevant compounds.  相似文献   

20.
Isodesmic reactions represent mild alternatives to other chemical transformations that require harsh oxidizing agents or highly reactive intermediates. However, enantioselective isodesmic C−H functionalization is unknown and enantioselective direct iodination of inert C−H bond is very rare. Rapid synthesis of chiral aromatic iodides is of significant importance for synthetic chemistry. Herein, we report an unprecedented highly enantioselective isodesmic C−H functionalization to access chiral iodinated phenylacetic Weinreb amides via desymmetrization and kinetic resolution with PdII catalysis. Importantly, further transformations of the enantioenriched products are readily available at the iodinated or the Weinreb amide position, paving the way of related studies for synthetic and medicinal chemists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号