首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The characteristics of electroosmotic flow in rectangular microchannels were investigated in this paper. A 2D Poisson–Boltzmann equation and the 2D momentum equation were used to model the electric double layer field and the flow field. The numerical solutions show significant influences of the channel cross-section geometry (i.e. the aspect ratio) on the velocity field and the volumetric flow rate. Also, the numerical simulation of the electroosmotic flow reveals how the velocity field and the volumetric flow rate depend on the ionic concentration, zeta potential, channel size and the applied electrical field strength.  相似文献   

2.
This paper presents the numerical results of electro-osmotic flows in micro- and nanofluidics using a lattice Poisson-Boltzmann method (LPBM) which combines a potential evolution method on discrete lattices to solve the nonlinear Poisson equation (lattice Poisson method) with a density evolution method on discrete lattices to solve the Boltzmann-BGK equation (lattice Boltzmann method). In an electrically driven osmotic flow field, the flow velocity increases with both the external electrical field strength and the surface zeta potential for flows in a homogeneous channel. However, for a given electrical field strength and zeta potential, electrically driven flows have an optimal ionic concentration and an optimum width that maximize the flow velocity. For pressure-driven flows, the electro-viscosity effect increases with the surface zeta potential, but has an ionic concentration that yields the largest electro-viscosity effect. The zeta potential arrangement has little effect on the electro-viscosity for heterogeneous channels. For flows driven by both an electrical force and a pressure gradient, various zeta potential arrangements were considered for maximize the mixing enhancement with a less energy dissipation.  相似文献   

3.
In this article, accurate analytic expressions of the surface charge density/surface potential and adsorption excesses for cylindrical reverse micelle in a solution of symmetric electrolyte are derived from the nonlinear cylindrical Poisson–Boltzmann equation. These expressions are in good agreement with numerical values and Van Aken's results for cylindrical reverse micelle with high surface potentials and large κa.  相似文献   

4.
The characteristics of electroosmotic flow in a cylindrical microchannel with non-uniform zeta potential distribution are investigated in this paper. Two-dimensional full Navier–Stokes equation is used to model the flow field and the pressure field. The numerical results show the distorted electroosmotic velocity profiles and various kinds of flow circulation resulting from the axial variation of the zeta potential. The influences of heterogeneous patterns of zeta potential on the velocity profile, the induced pressure distribution and the volumetric flow rate are discussed in this paper. This work shows that using either heterogeneous patterns of zeta potential or a combination of a heterogeneous zeta potential distribution and an applied pressure difference over the channel can generate local flow circulations and hence provide effective means to improve the mixing between different solutions in microchannels.  相似文献   

5.
This study analytically examines the steady diffusioosmotic and electroosmotic flows of an electrolyte solution in a fine capillary slit with each of its inside walls covered by a layer of adsorbed polyelectrolytes. In this solvent-permeable and ion-penetrable surface charge layer, idealized polyelectrolyte segments are assumed to distribute at a uniform density. The electric double layer and the surface charge layer may have arbitrary thicknesses relative to the gap width between the slit walls. The electrostatic potential distribution on a cross section of the slit is obtained by solving the linearized Poisson–Boltzmann equation, which applies to the case of low potentials or low fixed-charge densities. Explicit formulas for the fluid velocity profile due to the imposed electrolyte concentration gradient or electric field through the slit are derived as the solution of a modified Navier–Stokes/Brinkman equation. The results demonstrate that the structure of the surface charge layer can lead to an augmented or a diminished electrokinetic flow (even a reversal in direction of the flow) relative to that in a capillary with bare walls, depending on the characteristics of the capillary, of the surface charge layer, and of the electrolyte solution. For the diffusioosmotic flow with an induced electric field, competition between electroosmosis and chemiosmosis can result in more than one reversal in direction of the flow over a range of the Donnan potential of the adsorbed polyelectrolyte in the capillary.  相似文献   

6.
The main theme of the present work is to investigate the electrokinetic effects on liquid flow and heat transfer in a flat microchannel of two parallel plates under asymmetric boundary conditions including wall-sliding motion, unequal zeta potentials, and unequal heat fluxes on two walls. Based on the Debye-Huckel approximation, an electrical potential solution to the linearized Poisson-Boltzmann equation is obtained and employed in the analysis. The analytic solutions of the electrical potential, velocity distributions, streaming potential, friction coefficient, temperature distribution, and heat transfer rate are obtained, and thereby the effects of electrokinetic separation distance (K), zeta-potential level (zeta;(1)), ratio of two zeta potentials (r(zeta) identical with zeta;(2)/zeta;(1)), wall-sliding velocity (u(w)), and heat flux ratio (r(q) identical with q"(2)/q"(1)) are investigated. The present results reveal the effects of wall-sliding and zeta-potential ratio on the hydrodynamic nature of microchannel flow, and they are used to provide physical interpretations for the resultant electrokinetic effects and the underlying electro-hydrodynamic interaction mechanisms. In the final part the results of potential and velocity fields are applied in solving the energy equation. The temperature distributions and heat transfer characteristics under the asymmetrical kinematic, electric, and thermal boundary conditions considered presently are dealt with.  相似文献   

7.
An approximate equation for the electric potential distribution is obtained by linearizing the Poisson–Boltzmann with respect to the deviation of the electric potential from the surface potential. On the basis of the solution to this linearized Poisson–Boltzmann equation, an approximate expression is derived for the potential energy of the double layer interaction per unit area between two parallel similar plates at constant surface potential. It is found that this linearization approximation works quite well for small plate separations for all values of the surface potentials.  相似文献   

8.
Ren H. Luo  Huan J. Keh 《Electrophoresis》2020,41(16-17):1503-1508
The electrokinetic flow and accompanied electric conduction of a salt-free solution in the axial direction of a charged circular capillary are analyzed. No assumptions are made about the surface charge density (or surface potential) and electrokinetic radius of the capillary, which are interrelated. The Poisson–Boltzmann equation and modified Navier–Stokes equation are solved for the electrostatic potential distribution and fluid velocity profile, respectively. Closed-form formulas for the electroosmotic mobility and electric conductivity in the capillary are derived in terms of the surface charge density. The relative surface potential, electroosmotic mobility, and electric conductivity are monotonic increasing functions of the surface charge density and electrokinetic radius. However, the rises of the relative surface potential and electroosmotic mobility with an increase in the surface charge density are suppressed substantially when it is high due to the effect of counterion condensation. The analytical prediction that the electroosmotic mobility grows with increases in the surface charge density and electrokinetic radius agrees with the experimental results for salt-free solutions in circular microchannels in the literature.  相似文献   

9.
Efficient calculation of electrostatic interactions in colloidal systems is becoming more important with the advent of such probing techniques as atomic force microscopy. Such practice requires solving the nonlinear Poisson–Boltzmann equation (PBE). Unfortunately, explicit analytical solutions are available only for the weakly charged surfaces. Analysis of arbitrarily charged surfaces is possible only through cumbersome numerical computations. A compact analytical solution of the one-dimensional PBE is presented for two plates interacting in symmetrical electrolytes. The plates can have arbitrary surface potentials at infinite separation as long they have the same sign. Such a condition covers a majority of the colloidal systems encountered. The solution leads to a simple relationship which permits determination of surface potentials, surface charge densities, and electrostatic pressures as a function of plate separation H for different charging scenarios. An analytical expression is also presented for the potential profile between the plates for a given separation. Comparison of these potential profiles with those obtained by numerical analysis shows the validity of the proposed solution.  相似文献   

10.
A novel method is suggested to analytically solve a nonlinear Poisson–Boltzmann (NLPB) equation. The method consists chiefly of reducing the NLPB equation to linear PB equation in several segments by approximating a free term of the NLPB equation by piecewise linear functions, and then, solving analytically the linear PB equation in each segment. Superiority of the method is illustrated by applying the method to solve the NLPB equation describing a colloid sphere immersed in an arbitrary valence and mixed electrolyte solution; extensive test indicates that the resulting analytical expressions for both the electrical potential distribution Ψ (r) and surface charge density/surface potential relationship (σ/Ψ 0) are characterized with two properties that mathematical structures are much simpler than those previously reported and application scope can be arbitrarily wide by adjusting the linear interpolation range. Finally, it is noted that the method is “universal” in that its applications are not limited to the NLPB equation.  相似文献   

11.
12.
CPU time and memory usage are two vital issues that any numerical solvers for the Poisson–Boltzmann equation have to face in biomolecular applications. In this study, we systematically analyzed the CPU time and memory usage of five commonly used finite‐difference solvers with a large and diversified set of biomolecular structures. Our comparative analysis shows that modified incomplete Cholesky conjugate gradient and geometric multigrid are the most efficient in the diversified test set. For the two efficient solvers, our test shows that their CPU times increase approximately linearly with the numbers of grids. Their CPU times also increase almost linearly with the negative logarithm of the convergence criterion at very similar rate. Our comparison further shows that geometric multigrid performs better in the large set of tested biomolecules. However, modified incomplete Cholesky conjugate gradient is superior to geometric multigrid in molecular dynamics simulations of tested molecules. We also investigated other significant components in numerical solutions of the Poisson–Boltzmann equation. It turns out that the time‐limiting step is the free boundary condition setup for the linear systems for the selected proteins if the electrostatic focusing is not used. Thus, development of future numerical solvers for the Poisson–Boltzmann equation should balance all aspects of the numerical procedures in realistic biomolecular applications. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

13.
We apply the adaptive multilevel finite element techniques (Holst, Baker, and Wang 21 ) to the nonlinear Poisson–Boltzmann equation (PBE) in the context of biomolecules. Fast and accurate numerical solution of the PBE in this setting is usually difficult to accomplish due to presence of discontinuous coefficients, delta functions, three spatial dimensions, unbounded domains, and rapid (exponential) nonlinearity. However, these adaptive techniques have shown substantial improvement in solution time over conventional uniform‐mesh finite difference methods. One important aspect of the adaptive multilevel finite element method is the robust a posteriori error estimators necessary to drive the adaptive refinement routines. This article discusses the choice of solvent accessibility for a posteriori error estimation of PBE solutions and the implementation of such routines in the “Adaptive Poisson–Boltzmann Solver” (APBS) software package based on the “Manifold Code” (MC) libraries. Results are shown for the application of this method to several biomolecular systems. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 1343–1352, 2000  相似文献   

14.
The Gauss–Seidel (GS) method is a standard iterative numerical method widely used to solve a system of equations and, in general, is more efficient comparing to other iterative methods, such as the Jacobi method. However, standard implementation of the GS method restricts its utilization in parallel computing due to its requirement of using updated neighboring values (i.e., in current iteration) as soon as they are available. Here, we report an efficient and exact (not requiring assumptions) method to parallelize iterations and to reduce the computational time as a linear/nearly linear function of the number of processes or computing units. In contrast to other existing solutions, our method does not require any assumptions and is equally applicable for solving linear and nonlinear equations. This approach is implemented in the DelPhi program, which is a finite difference Poisson–Boltzmann equation solver to model electrostatics in molecular biology. This development makes the iterative procedure on obtaining the electrostatic potential distribution in the parallelized DelPhi several folds faster than that in the serial code. Further, we demonstrate the advantages of the new parallelized DelPhi by computing the electrostatic potential and the corresponding energies of large supramolecular structures. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
This article deals with a semi‐analytical study on the electrophoresis of charged spherical rigid colloid by considering the effects of relaxation and ion size. The particle surface is taken to be either hydrophilic or hydrophobic in nature. In order to consider the ion size effect we have invoked the Carnahan and Starling model (J. Chem. Phys. 1969, 51, 635‐636). The mathematical model is based on Stokes equation for fluid flow, modified Boltzmann equation for spatial distribution of ionic species and Poisson equation for electric potential. We adopt a linear perturbation technique under a weak electric field assumption. An iterative numerical technique in employed to solve the coupled set of perturbed equations. We have validated the numerically obtained electrophoretic mobility with the corresponding analytical solution derived under low potential limit. Going beyond the widely employed Debye‐Hückel linearization, we have presented the results for a wide range of surface charge density, electrolyte concentration, and slip length to Debye length ratio. We have also identified several interesting features including occurrence of local maxima and minima in the mobility for critical choice of pertinent parameters.  相似文献   

16.
《Electrophoresis》2017,38(9-10):1301-1309
Effects of overlapping electric double layer and high wall potential on transport of a macrosolute for flow of a power law fluid through a microchannel with porous walls are studied in this work. The electric potential distribution is obtained by coupling the Poisson's equation without considering the Debye–Huckel approximation. The numerical solution shows that the center line potential can be 16% of wall potential at pH 8.5, at wall potential −73 mV and scaled Debye length 0.5. Transport phenomena involving mass transport of a neutral macrosolute is formulated by species advective equation. An analytical solution of Sherwood number is obtained for power law fluid. Effects of fluid rheology are studied in detail. Average Sherwood number is more for a pseudoplastic fluid compared to dilatant upto the ratio of Poiseuille to electroosmotic velocity of 5. Beyond that, the Sherwood number is independent of fluid rheology. Effects of fluid rheology and solute size on permeation flux and concentration of neutral solute are also quantified. More solute permeation occurs as the fluid changes from pseudoplastic to dilatant.  相似文献   

17.
A simpler expression of the surface charge density/surface potential relationship for spherical reverse micelles is obtained. In order to illustrate its application the approximate solution was used to calculate the thermodynamic characteristics and adsorption excesses. The approximate solution is based on the extended Langmuir's approach to the Poisson‐Boltzmann equation. The solutions for spherical reverse micelle are quite accurate provided that their radius and surface charge density are relatively larger. It is anticipated that this solution will be much easier to use in applications.  相似文献   

18.
The Poisson‐Boltzmann equation is an important tool in modeling solvent in biomolecular systems. In this article, we focus on numerical approximations to the electrostatic potential expressed in the regularized linear Poisson‐Boltzmann equation. We expose the flux directly through a first‐order system form of the equation. Using this formulation, we propose a system that yields a tractable least‐squares finite element formulation and establish theory to support this approach. The least‐squares finite element approximation naturally provides an a posteriori error estimator and we present numerical evidence in support of the method. The computational results highlight optimality in the case of adaptive mesh refinement for a variety of molecular configurations. In particular, we show promising performance for the Born ion, Fasciculin 1, methanol, and a dipole, which highlights robustness of our approach. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

19.
The aim of this work was to find a relationship between electroosmotic flow (EOF) velocity of the mobile phase in pressurized planar electrochromatography (PPEC) and physicochemical properties like zeta potential, dielectric constant, and viscosity of the mobile phase as well as its composition. The study included different types of organic modifiers (acetonitrile, methanol, ethanol, acetone, formamide, N-methylformamide and N,N-dimethylformamide) in the full concentration range. In all experiments, chromatographic glass plates HPTLC RP-18 W from Merck (Darmstadt) were used as a stationary phase. During the study we found that there is no linear correlation between EOF velocity of the mobile phase and single variables such as zeta potential or dielectric constant or viscosity. However, there is quite strong linear correlation between EOF velocity of the mobile phase and variable obtained by multiplying zeta potential of the stationary phase–mobile phase interface, by dielectric constant of the mobile phase solution and dividing by viscosity of the mobile phase. Therefore, it could be concluded that the PPEC system fulfilled the Helmholtz–Smoluchowski equation.  相似文献   

20.
We compare the results of a new approximation for the interionic radial distribution function developed previously by Olivares and McQuarrie to those from the nonlinear Poisson—Boltzmann equation for the highly-charged system of the spherical protein bearing a charge as 20 in an aqueous electrolyte solution. In particular, we use both approximations to predict the experimental results for protein titration, which are the experimental data to which the results of the Poisson—Boltzmann equation had been directed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号