首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ordered π‐columnar structures found in covalent organic frameworks (COFs) render them attractive as smart materials. However, external‐stimuli‐responsive COFs have not been explored. Here we report the design and synthesis of a photoresponsive COF with anthracene units as the photoresponsive π‐building blocks. The COF is switchable upon photoirradiation to yield a concavo‐convex polygon skeleton through the interlayer [4π+4π] cycloaddition of anthracene units stacked in the π‐columns. This cycloaddition reaction is thermally reversible; heating resets the anthracene layers and regenerates the COF. These external‐stimuli‐induced structural transformations are accompanied by profound changes in properties, including gas adsorption, π‐electronic function, and luminescence. The results suggest that COFs are useful for designing smart porous materials with properties that are controllable by external stimuli.  相似文献   

2.
杨杰瑞  孟爽  杨云慧 《化学通报》2023,86(7):798-806,797
共价有机框架材料(Covalent Organic Frameworks,COFs)是由有机结构单元通过共价键连接的具有期性结构的多孔化合物。共价有机框架材料具有永久的孔隙、高的比表面积、可调的孔径、易于功能化和高的水热稳定性等优点,广泛应用于许多领域。本文总结了COFs目前主要的合成方法,介绍了COFs在吸附领域的应用和发展。最后,文章指出未来的研究重点是发展更多有机反应和键连方式,合成具有高度稳定性和结晶度、成本低廉的功能性材料。  相似文献   

3.
Covalent organic frameworks (COFs) as an emerging type of crystalline porous materials, have obtained considerable attention recently. They have exhibited diverse structure and attractive performance in various catalytic reactions. It is highly expected to have a systematic and comprehensive review summing up COFs‐derived catalysts in homogeneous and heterogeneous catalysis, which is favorable to the judicious design of an efficient catalyst for targeted reaction. Herein, we focus on summarizing recent and significant developments in COFs materials, with an emphasis on both the synthetic strategies and targeted functionalization, and categorize it in accordance with the different types of catalytic reactions. Their potential catalysis applications are reviewed thoroughly. Moreover, a personal view about the future development of COFs catalysts with respect to the large‐scale production is also discussed.  相似文献   

4.
Covalent organic frameworks (COFs) are attractive materials receiving increasing interest in the literature due to their crystallinity, large surface area, and pore uniformity. Their properties can be tailored towards specific applications by judicious design of COF building blocks, giving access to tailor-made pore sizes and surfaces. In this Concept article, developments in the field of COFs that have allowed these materials to be explored for contaminant adsorption are discussed. Strategies to obtain water-stable materials with highly ordered structures and large surface areas are reviewed. Post-synthetic modification approaches, by which pore surfaces can be tuned to target specific contaminants, are described. Recent advances in COF formulations, crucial for future implementation in adsorption devices, are highlighted. At the end, future challenges which need to be addressed to allow for the deployment of COFs for the capture of water contaminants will be discussed.  相似文献   

5.
Integrating different kinds of pores into one covalent organic framework (COF) endows it with hierarchical porosity and thus generates a member of a new class of COFs, namely, heteropore COFs. Whereas the construction of COFs with homoporosity has already been well developed, the fabrication of heteropore COFs still faces great challenges. Although two strategies have recently been developed to successfully construct heteropore COFs from noncyclic building blocks, they suffer from the generation of COF isomers, which decreases the predictability and controllability of construction of this type of reticular materials. In this work, this drawback was overcome by a multiple‐linking‐site strategy that offers precision construction of heteropore COFs containing two kinds of hexagonal pores with different shapes and sizes. This strategy was developed by designing a building block in which double linking sites are introduced at each branch of a C3‐symmetric skeleton, the most widely used scaffold to construct COFs with homogeneous porosity. This design provides a general way to precisely construct heteropore COFs without formation of isomers. Furthermore, the as‐prepared heteropore COFs have hollow‐spherical morphology, which has rarely been observed for COFs, and an uncommon staggered AB stacking was observed for the layers of the 2D heteropore COFs.  相似文献   

6.
The electrochromic materials have received immense attention for the fabrication of smart optoelectronic devices. The alteration of the redox states of the electroactive functionalities results in the color change in response to electrochemical potential. Even though transition metal oxides, redox-active small organic molecules, conducting polymers, and metallopolymers are known for electrochromism, advanced materials demonstrating multicolor switching with fast response time and high durability are of increasing demand. Recently, two-dimensional covalent organic frameworks (2D COFs) have been demonstrated as electrochromic materials due to their tunable redox functionalities with highly ordered structure and large specific surface area facilitating fast ion transport. Herein, we have discussed the mechanistic insights of electrochromism in 2D COFs and their structure-property relationship in electrochromic performance. Furthermore, the state-of-the-art knowledge for developing the electrochromic 2D COFs and their potential application in next-generation display devices are highlighted.  相似文献   

7.
The design and synthesis of 3D covalent organic frameworks (COFs) have been considered a challenge, and the demonstrated applications of 3D COFs have so far been limited to gas adsorption. Herein we describe the design and synthesis of two new 3D microporous base‐functionalized COFs, termed BF‐COF‐1 and BF‐COF‐2, by the use of a tetrahedral alkyl amine, 1,3,5,7‐tetraaminoadamantane (TAA), combined with 1,3,5‐triformylbenzene (TFB) or triformylphloroglucinol (TFP). As catalysts, both BF‐COFs showed remarkable conversion (96 % for BF‐COF‐1 and 98 % for BF‐COF‐2), high size selectivity, and good recyclability in base‐catalyzed Knoevenagel condensation reactions. This study suggests that porous functionalized 3D COFs could be a promising new class of shape‐selective catalysts.  相似文献   

8.
The vastness of organic synthetic strategies and knowledge of reticular chemistry have made covalent organic frameworks (COFs) one of the most chemically and structurally diverse class of materials with potential applications ranging from gas storage, molecular separation, and catalysis to energy storage and magnetism. Recently, this class of porous materials has garnered increasing interest as potential nonlinear optical (NLO) materials. Traditionally, inorganic crystals, small-molecule organic chromophores, and oligomers have been studied for their NLO response. Nevertheless, COFs offer significant advantages over existing NLO materials in terms of higher mechanical strength, thermochemical stability, and extended conjugation. Herein, we discuss crucial aspects, terminology, and measurement techniques related to NLO, followed by a critical analysis of the design principles for COFs with NLO response. Furthermore, we touch on selected potential applications of these NLO materials. Finally, future prospects and challenges of COFs as NLO materials are discussed.  相似文献   

9.
The development of organic photoluminescent materials, which show promising roles as catalysts, sensors, organic light-emitting diodes, logic gates, etc., is a major demand and challenge for the global scientific community. In this context, a photoclick polymerization method is adopted for the growth of a unique photoluminescent three-dimensional (3D) polymer film, E, as a model system that shows emission tunability over the range 350–650 nm against the excitation range 295–425 nm. The DFT analysis of energy calculations and π-stacking supports the spectroscopic observations for the material exhibiting a broad range of emission owing to newly formed chromophoric units within the film. Full polarization spectroscopic Mueller matrix studies were employed to extract and quantify the molecular orientational order of both the ground (excitation) and excited (emission) state anisotropies through a set of newly defined parameters, namely the fluorescence diattenuation and fluorescence polarizance. The information contained in the recorded fluorescence Mueller matrix of the organic polymer material provided a useful way to control the spectral intensity of emission by using pre- and post-selection of polarization states. The observation was based on the assumption that the longer lifetime of the excited dipolar orientation is attributed to the compactness of the film.  相似文献   

10.
Owing to their permanent porosity, highly ordered and extended structure, good chemical stability, and tunability, covalent organic frameworks (COFs) have emerged as a new type of organic materials that can offer various applications in different fields. Benefiting from the huge database of organic reactions, the required functionality of COFs can be readily achieved by modification of the corresponding organic functional groups on either polymerizable monomers or established COF frameworks. This striking feature allows homochiral covalent organic frameworks (HCCOFs) to be reasonably designed and synthesized, as well as their use as a unique platform to fabricate asymmetric catalysts. This contribution provides an overview of new progress in HCCOF-based asymmetric catalysis, including design, synthesis, and their application in asymmetric organic synthesis. Moreover, major challenges and developing trends in this field are also discussed. It is anticipated that this review article will provide some new insights into HCCOFs for heterogeneous asymmetric catalysis and help to encourage further contributions in this young but promising field.  相似文献   

11.
Covalent organic frameworks (COFs), covalently assembled from the condensation reactions of organic building blocks, are a fascinating class of functional porous materials with two- or three-dimensional crystalline organic structures. Generally, it is preferable to use symmetric and rigid building blocks to construct highly crystalline COFs with desired topology. On the other hand, the incorporation of chiral functional moieties in the building blocks would open up new applications such as asymmetric catalysis and chiral separation. This mini review highlights the principle strategies in the design and synthesis of chiral COFs. The interesting and potential applications of these chiral COFs for asymmetric catalysis and chiral separation are also summarized. This mini review aims to provide an up-to-date advancement of chiral COFs for asymmetric catalysis and chiral separation.  相似文献   

12.
徐世娴  万伊娜 《化学通报》2021,84(2):149-153,166
共价有机骨架(COFs)是一种新型的纳米结构材料,由于其独特的性质而受到人们的广泛关注.COFs的结晶.度高,孔径可调,比表面积大,具有良好的抗氧化性能和独特的分子结构,在能源、环境等方面得到了广泛的应用.COFs材料有较高的应用价值,促使人们不断努力研究其基本性质,并调控其结构和功能来提高性能.通过COFs的可设计性...  相似文献   

13.
Covalent organic frameworks (COFs) are a class of crystalline porous polymers that allow the atomically precise integration of organic units to create predesigned skeletons and nanopores. They have recently emerged as a new molecular platform for designing promising organic materials for gas storage, catalysis, and optoelectronic applications. The reversibility of dynamic covalent reactions, diversity of building blocks, and geometry retention are three key factors involved in the reticular design and synthesis of COFs. This tutorial review describes the basic design concepts, the recent synthetic advancements and structural studies, and the frontiers of functional exploration.  相似文献   

14.
The construction of a new class of covalent TTF lattice by integrating TTF units into two‐dimensional covalent organic frameworks (2D COFs) is reported. We explored a general strategy based on the C2+C2 topological diagram and applied to the synthesis of microporous and mesoporous TTF COFs. Structural resolutions revealed that both COFs consist of layered lattices with periodic TTF columns and tetragonal open nanochannels. The TTF columns offer predesigned pathways for high‐rate hole transport, predominate the HOMO and LUMO levels of the COFs, and are redox active to form organic salts that exhibit enhanced electric conductivity by several orders of magnitude. On the other hand, the linkers between the TTF units play a vital role in determining the carrier mobility and conductivity through the perturbation of 2D sheet conformation and interlayer distance. These results open a way towards designing a new type of TTF materials with stable and predesignable lattice structures for functional exploration.  相似文献   

15.
Photocatalytic organic transformation is an efficient, energysaving and environmentally friendly strategy for organic synthesis. The key to developing a green and economical route for photocatalytic organic synthesis lies in the construction of optimal photocatalysts. Covalent organic frameworks(COFs), a kind of porous crystalline materials with characteristics of high surface area, excellent porosity, and superior thermo-chemical stability, have driven people to explore their potential as photocatalysts in photocatalytic organic transformations by virtue of their structural versatility and designability. Furthermore, the insolubility of COFs makes it possible to recycle the catalysts by simple technical means. In recent years, researchers have made great efforts to develop both the design strategies of COFs as heterogeneous photocatalysts and the reaction types of photocatalytic organic transformations. In this review, we focus on the design of COF-based photocatalytic materials and analyze the influence factors of photocatalytic performance. Moreover, we summarize the application of COFbased photocatalysts in photocatalytic organic conversion. Finally, the perspectives on new opportunities and challenges in the field are discussed.  相似文献   

16.
The integrated advantages of organic electrode materials and potassium metal make the organic potassium-ion batteries (OPIBs) promising secondary batteries. This review summarizes the latest research progress on OPIBs according to the different types of electrode materials (namely, organic small molecules compounds, polymers, and frameworks (metal–organic frameworks (MOFs), covalent organic frameworks (COFs)). Additionally, the research prospects and outlook for OPIBs are also provided.  相似文献   

17.
Covalent organic frameworks (COFs) are an emerging class of porous covalent organic structures whose backbones were composed of light elements (B, C, N, O, Si) and linked by robust covalent bonds to endow such material with desirable properties, i.e., inherent porosity, well-defined pore aperture, ordered channel structure, large surface area, high stability, and multi-dimension. As expected, the above-mentioned properties of COFs broaden the applications of this class of materials in various fields such as gas storage and separation, catalysis, optoelectronics, sensing, small molecules adsorption, and drug delivery. In this review, we outlined the synthesis of COFs and highlighted their applications ranging from the initial gas storage and separation to drug delivery.  相似文献   

18.
Featuring the art of covalent chemistry on 2D and 3D with molecular precision, covalent organic frameworks (COFs) have attracted immense interests from inorganic, organic, polymer, materials and energy chemistry. However, due to the synthetic challenge of “crystallization problem”, structural determination of COFs has been the bottle‐neck in speeding up their discovery and design, as well as building up their structure‐ property relation. Electron diffraction tomography (EDT) has been developed to determine crystal structures of COFs with only sub‐micrometer sized single crystals, which enabled the ab initio determination of crystal structure, molecular connectivity, pore metrics, and host‐guest interaction at the atomic level. In this review, we summarized the recent developments of EDT for addressing challenges in structure determinations of such e‐beam sensitive, organic porous crystals, covering comprehensively automatic data collection, low dose, cryogenic protocols, structural solution method, powder X‐ray diffraction refinement, and high‐resolution transmission electron microscopy (HRTEM) imaging techniques. We do believe the EDT will propel this field into the new era of COF chemistry with atomic precision, and we envision the wide application of artificial intelligence will promote the structural determination and particle analysis of COFs and related materials.  相似文献   

19.
Metal–organic frameworks (MOFs) and covalent organic frameworks (COFs) have attracted enormous attention in recent years. Recently, MOF@COF are emerging as hybrid architectures combining the unique features of the individual components to enable the generation of materials displaying novel physicochemical properties. Herein we report an unprecedented use of aza-Diels–Alder cycloaddition reaction as post-synthetic modification of MOF@COF-LZU1, to generate aza-MOFs@COFs hybrid porous materials with extended π-delocalization. A a proof-of-concept, the obtained aza-MOFs@COFs is used as electrode in supercapacitors displaying specific capacitance of 20.35 μF cm−2 and high volumetric energy density of 1.16 F cm−3. Our approach of post-synthetic modification of MOFs@COFs hybrids implement rational design for the synthesis of functional porous materials and expands the plethora of promising application of MOFs@COFs hybrid porous materials in energy storage applications.  相似文献   

20.
共价有机骨架(COFs)材料是由有机小分子单体通过共价键连接形成的结晶多孔聚合物。与传统的线性聚合物不同的是,COFs可以在二维和三维空间上对其骨架结构进行控制,从而合成具有高度有序的刚性多孔结构,并且能够调节骨架的化学和物理性质。这种由COF形成的纳米级孔道和空间为分子存储、释放和分离提供了理想的环境。因此它在能量储存、分离、催化等领域有着广泛的应用前景。本文综述了近年来COFs材料的研究进展,主要包括材料的合成策略及其在分离领域的应用,并对COFs材料未来的发展方向进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号