首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gas-phase structures of the fruit ester methyl hexanoate, CH3-O-(C=O)-C5H11, have been determined using a combination of molecular jet Fourier-transform microwave spectroscopy and quantum chemistry. The microwave spectrum was measured in the frequency range of 3 to 23 GHz. Two conformers were assigned, one with Cs symmetry and the other with C1 symmetry where the γ-carbon atom of the hexyl chain is in a gauche orientation in relation to the carbonyl bond. Splittings of all rotational lines into doublets were observed due to internal rotation of the methoxy methyl group CH3-O, from which torsional barriers of 417 cm−1 and 415 cm−1, respectively, could be deduced. Rotational constants obtained from geometry optimizations at various levels of theory were compared to the experimental values, confirming the soft degree of freedom of the (C=O)-C bond observed for the C1 conformer of shorter methyl alkynoates like methyl butyrate and methyl valerate. Comparison of the barriers to methyl internal rotation of methyl hexanoate to those of other CH3-O-(C=O)-R molecules leads to the conclusion that though the barrier height is relatively constant at about 420 cm−1, it decreases in molecules with longer R.  相似文献   

2.
The microwave spectrum of 2-acetyl-3-methylthiophene (2A3MT) was recorded in the frequency range from 2 to 26.5 GHz using a molecular jet Fourier transform microwave spectrometer and could be fully assigned to the anti-conformer of the molecule, while the syn-conformer was not observable. Torsional splittings of all rotational transitions in quintets due to internal rotations of the acetyl methyl and the ring methyl groups were resolved and analyzed, yielding barriers to internal rotation of 306.184(46) cm−1 and 321.813(64) cm−1, respectively. The rotational and centrifugal distortion constants were determined with high accuracy, and the experimental values are compared to those derived from quantum chemical calculations. The experimentally determined inertial defect supports the conclusion that anti-2A3MT is planar, even though a number of MP2 calculations predicted the contrary.  相似文献   

3.
Methyl n-alkyl ketones form a class of molecules with interesting internal dynamics in the gas-phase. They contain two methyl groups undergoing internal rotations, the acetyl methyl group and the methyl group at the end of the alkyl chain. The torsional barrier of the acetyl methyl group is of special importance, since it allows for the discrimination of the conformational structures. As part of the series, the microwave spectrum of octan-2-one was recorded in the frequency range from 2 to 40 GHz, revealing two conformers, one with C1 and one with Cs symmetry. The barriers to internal rotation of the acetyl methyl group were determined to be 233.340(28) cm−1 and 185.3490(81) cm−1, respectively, confirming the link between conformations and barrier heights already established for other methyl alkyl ketones. Extensive comparisons to molecules in the literature were carried out, and a small overview of general trends and rules concerning the acetyl methyl torsion is given. For the hexyl methyl group, the barrier height is 973.17(60) cm−1 for the C1 conformer and 979.62(69) cm−1 for the Cs conformer.  相似文献   

4.
Using two molecular jet Fourier transform spectrometers, the microwave spectrum of hexan-2-one, also called methyl n-butyl ketone, was recorded in the frequency range from 2 to 40 GHz. Three conformers were assigned and fine splittings caused by the internal rotations of the two terminal methyl groups were analyzed. For the acetyl methyl group CH3 COC3H6CH3, the torsional barrier is 186.9198(50) cm−1, 233.5913(97) cm−1, and 182.2481(25) cm−1 for the three observed conformers, respectively. The value of this parameter could be linked to the structure of the individual conformer, which enabled us to create a rule for predicting the barrier height of the acetyl methyl torsion in ketones. The very small splittings arising from the internal rotation of the butyl methyl group CH3COC3H6 CH3 could be resolved as well, yielding the respective torsional barriers of 979.99(88) cm−1, 1016.30(77) cm−1, and 961.9(32) cm−1.  相似文献   

5.
The rotational spectrum of phenyl acetate, CH3COOC6H5, is measured using a free jet absorption millimeter-wave spectrometer in the range from 60 to 78 GHz and two pulsed jet Fourier transform microwave spectrometers covering a total frequency range from 2 to 26.5 GHz. The features of two large amplitude motions, the methyl group internal rotation and the skeletal torsion of the CH3COO group with respect to the phenyl ring C6H5 (tilted at about 70°), characterize the spectrum. The vibrational ground state is split into four widely spaced sublevels, labeled as A0, E0, A1, and E1, each of them with its set of rotational transitions and with additional interstate transitions. A global fit of the line frequencies of the four sublevels leads to the determination of 51 spectroscopic parameters, including the ΔEA0/A1 and ΔEE0/E1 vibrational splittings of ~36.4 and ~33.5 GHz, respectively. The V3 barrier to methyl internal rotation (~136 cm−1) and the skeletal torsion B2 barrier to the orthogonality of the two planes (~68 cm−1) are deduced.  相似文献   

6.
唐守渊  付钰洁  夏之宁  李百战 《化学进展》2011,23(10):2151-2159
分子中基团的运动方式、机制对分子体系性质、分子功能的表达等具有重要作用。微波波谱法在研究分子系统内部动力学、分子结构、构象变化、弱相互作用、基团大幅度运动以及探索量子溶剂等方面具有独特的能力,特别适合研究分子的精细结构、分子系统基团的内部转动运动,具有高灵敏度、高分辨率的特点。本文讨论了微波波谱法在研究分子系统基团大幅度运动动力学方面的应用,包括分子系统中甲基基团的内部转动、OH基团的运动、氨和氨基化合物的反演以及环状有机分子环运动等的动力学,同时结合作者使用微波波谱法研究的部分体系进行了分析。  相似文献   

7.
The molecular‐beam Fourier transform microwave spectrum of 2‐acetyl‐5‐methylfuran is recorded in the frequency range 2–26.5 GHz. Quantum chemical calculations calculate two conformers with trans or cis configuration of the acetyl group, both of which are assigned in the experimental spectrum. All rotational transitions split into quintets due to the internal rotations of two nonequivalent methyl groups. By using the program XIAM, the experimental spectra can be simulated with standard deviations within the measurement accuracy, and yield well‐determined rotational and internal rotation parameters, inter alia the V3 potentials. Whereas the V3 barrier height of the ring‐methyl rotor does not change for the two conformers, that of the acetyl‐methyl rotor differs by about 100 cm?1. The predicted values from quantum chemistry are only on the correct order of magnitude.  相似文献   

8.
9.
10.
Abstract

Phosphinic acids may be efficiently esterified in microwave-assisted reactions with alcohols. Especially alcohols with longer alkyl chain are suitable reagents for direct esterifications. At the same time, the direct amidation cannot be complete under such conditions. Hence, the tradional amidations via the phosphinic chloride intermediates have to be applied. The values of activation enthalpies and reaction enthalpies obtained by quantum chemical calculations justified the experimental observations. Microwave has a potential in overcoming relatively high activation enthalpies.  相似文献   

11.
Large amplitude motions (LAMs) form a fundamental phenomenon that demands the development of specific theoretical and Hamiltonian models. In recent years, along with the strong progress in instrumental techniques on high-resolution microwave spectroscopy and computational capacity in quantum chemistry, studies on LAMs have become very diverse. Larger and more complex molecular systems have been taken under investigation, ranging from series of heteroaromatic molecules from five- and six-membered rings to polycyclic-aromatic-hydrocarbon derivatives. Such systems are ideally suited to create families of molecules in which the positions and the number of LAMs can be varied, while the heteroatoms often provide a sufficient dipole moment to the systems to warrant the observation of their rotational spectra. This review will summarize three types of LAMs: internal rotation, inversion tunneling, and ring puckering, which are frequently observed in aromatic five-membered rings such as furan, thiophene, pyrrole, thiazole, and oxazole derivatives, in aromatic six-membered rings such as benzene, pyridine, and pyrimidine derivatives, and larger combined rings such as naphthalene, indole, and indan derivatives. For each molecular class, we will present the representatives and summarize the recent insights on the molecular structure and internal dynamics and how they help to advance the field of quantum mechanics.  相似文献   

12.
13.
The processes and reactions that led to the formation of the first biomolecules on Earth play a key role in the highly debated theme of the origin of life. Whether the first chemical building blocks were generated on Earth (endogenous synthesis) or brought from space (exogenous delivery) is still unanswered. The detection of complex organic molecules in the interstellar medium provides valuable support to the latter hypothesis. To gather more insight, here we provide the astronomers with accurate rotational frequencies to guide the interstellar search of 3-aminoisoxazole, which has been recently envisaged as a key reactive species in the scenario of the so-called RNA-world hypothesis. Relying on an accurate computational characterization, we were able to register and analyze the rotational spectrum of 3-aminoisoxazole in the 6–24 GHz and 80–320 GHz frequency ranges for the first time, exploiting a Fourier-transform microwave spectrometer and a frequency-modulated millimeter/sub-millimeter spectrometer, respectively. Due to the inversion motion of the −NH2 group, two states arise, and both of them were characterized, with more than 1300 lines being assigned. Although the fit statistics were affected by an evident Coriolis interaction, we were able to produce accurate line catalogs for astronomical observations of 3-aminoisoxazole.  相似文献   

14.
The potential of the internal rotation of the methyl group was determined for o-, m-, and p-fluorotoluene cations by pulsed field ionization spectroscopy. The potential of the internal rotational motion was also surveyed for other toluene derivative cations. It was found that the barrier height generally increases by ionization. The increase in the barrier height has been discussed in connection with the reduction of the internal rotational constant B by ionization. The geometrical distortion of the methyl group during the internal rotation has been suggested.  相似文献   

15.
To accurately characterize the large amplitude motions and soft degrees of freedom of isolated molecules, sampling their conformational landscape by molecular mechanics and quantum chemical calculations may provide a valuable insight into the structure and dynamics. However, the resulting models need to be validated by a reliable experimental counterpart. For ethyl pentanoates, which belong to the family of fruit esters, benchmark calculations at different levels of theory showed that the C−C bond in proximity to the ester carbonyl group exhibits a large amplitude motion that is extremely sensitive to the choice of quantum chemical method and basis set. In such cases, insights from high-resolution molecular jet techniques are ideal to accurately identify and characterize soft degrees of freedom. Here, we report on the most abundant conformer of ethyl 2-ethyl butyrate using Fourier-transform microwave spectroscopy. We show that – unlike other structurally related pentanoates for which gas-phase and crystallographic data is available – ethyl 2-ethyl butyrate possesses a Cs symmetry plane under molecular jet conditions.  相似文献   

16.
The physicochemical properties and reactivity of macrocycles are critically shaped by their conformations. In this work, we have identified seven conformations of the macrocyclic ketone cyclododecanone using chirped-pulse Fourier transform microwave spectroscopy in combination with ab initio and density functional theory calculations. Cyclododecanone is strongly biased towards adopting a square configuration of the heavy atom framework featuring three C–C bonds per side. The substitution and effective structures of this conformation have been determined through the observation of its 13C isotopologues. The minimisation of transannular interactions and, to a lesser extent, HCCH eclipsed configurations drive conformational preferences. Our results contribute to a better understanding of the intrinsic forces mediating structural choices in macrocycles.  相似文献   

17.
Gas‐phase structures of several organic and inorganic peroxides X‐O‐O‐X and X‐O‐O‐X′, which have been determined experimentally by gas electron diffraction and/or microwave spectroscopy, are discussed. The O?O bond length in these peroxides varies from 1.481(8) Å in Me3SiOOSiMe3 to 1.214(2) Å in FOOF and the dihedral angle ?(XO‐OX) between 0° in HC(O)O‐OH and near 180° in ButO‐OBut. Some of the peroxides cause problems for quantum chemistry, since several computational methods fail to reproduce the experimental structures. Extreme examples are MeO‐OMe and FO‐OF. In the case of MeO‐OMe only about half of the more than 100 computational methods reported in the literature reproduce the experimentally determined double‐minimum shape of the torsional potential around the O?O bond correctly. For FO‐OF only a small number of close to 200 computational methods reproduce the O?O and O?F bond lengths better than ±0.02 Å.  相似文献   

18.
1,4-Naphthoquinone (1,4-NQ) is an important product of naphthalene oxidation, and it appears as a motif in many biologically active compounds. We have investigated the structure of 1,4-NQ using chirped-pulse Fourier transform microwave spectroscopy and quantum chemistry calculations. The rotational spectra of the parent species, and its 13C and 18O isotopologues were observed in natural abundance, and their spectroscopic parameters were obtained. This allowed the determination of the substitution rs, mass-weighted rm and semi-experimental reSE structures of 1,4-NQ. The obtained structural parameters show that the quinone moiety mainly changes the structure of the benzene ring where it is inserted, modifying the C−C bonds to having predominantly single or double bond character. Furthermore, the molecular electrostatic surface potential reveals that the quinone ring becomes electron deficient while the benzene ring remains a nucleophile. The most electrophilic areas are the hydrogens attached to the double bond in the quinone ring. Knowledge of the nucleophilic and electrophilic areas in 1,4-NQ will help understanding its behaviour interacting with other molecules and guide modifications to tune its properties.  相似文献   

19.
Vibrational and rotational transitions of c type with 24 ≥ J ≥ 18 between the pseudorotational states v = 4 and v = 5 have been identified in the range 23 GHz–39 GHz of the microwave spectrum of 1,3-dioxolane (C3H6O2); their frequencies have been measured. Spectrum analysis was performed using numerical diagonalization of the effective rotational Hamiltonian for three states: v = 4, 5, and 6 of hindered pseudorotation, and it gave the intervals ΔE 45 = 331,023 MHz and ΔE 56 = 298,771 MHz. The potential function of hindered pseudorotation was determined from the values of ΔE 45 and Δ E 56 and from the values of ΔE 01, ΔE 12, ΔE 23, and ΔE 78 found previously for the molecule; the molecular conformation has been established.Original Russian Text Copyright © 2004 by A. Kh. Mamleev, L. N. Gunderova, R. V. Galeev, and A. A. Shapkin__________Translated from Zhurnal Strukturnoi Khimii, Vol. 45, No. 6, pp. 1008–1012, November–December, 2004.  相似文献   

20.
Gold‐chalcogen interactions are ubiquitous in gold biological and medicinal systems. Understanding the nature of these interactions can provide the basis for regulating their structures and functionalities, and a reasonable way to interpret the differences in various properties. However, the relative strength of gold‐chalcogen bonds remains controversial, and the conclusions of many related works are inconsistent. Thus, in this work, we successfully quantified the relative strength of Au‐X (X=S, Se, and Te from chalcogenide‐containing A‐B‐A type block copolymers) interactions at the single‐molecule level through single‐molecule force spectroscopy (SMFS) from a kinetic point of view and quantum chemical studies from a thermodynamic point of view. Both sets of results suggested that the strength of the Au‐X bonds decreases as Au‐Te>Au‐Se>Au‐S. Our findings unveiled the relative strength and nature of gold‐chalcogen interactions, which may help expand their application in electronics, catalysis, medicine and many other fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号