首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
An ultra‐high‐performance liquid chromatography mass spectrometry method was established to detect and identify the chemical constituents of Zi Shen Formula (ZSF) and its metabolites in serum, urine and feces, after oral administration to rats. A total of 68 compounds were characterized in ZSF extracts. In vivo, 38 prototype components and 32 metabolites of ZSF were tentatively identified in rat serum, urine and feces. Seven metabolic pathways including demethylation, hydroxylation, oxidation, sulfation, glucuronidation, methylation and de‐caffeoyl were proposed to be involved in the generation of these metabolites. It was found that glucuronidation, methylation and demethylation were the major metabolic processes of alkaloids, while demethylation, methylation, sulfation and de‐caffeoyl were the major metabolic pathways of phenylethanoid glycosides. The main metabolic pathways of steroidal saponins were oxidation and isotype reactions. These findings are significant for our understanding of the metabolism of ZSF. The proposed metabolic pathways of bioactive components might be crucial for further studies of the mechanisms of action and pharmacokinetic evaluations of ZSF.  相似文献   

2.
Rhizoma et Radix Polygoni Cuspidati (RRPC) is commonly prescribed for the treatment of amenorrhea, arthralgia, jaundice and abscess in traditional Chinese medicine. Previous pharmacological studies have indicated that polyphenols are the main pharmacological active ingredients in RRPC. Meanwhile, the poor bioavailability of polyphenols in RRPC implies that those components are probably metabolized by intestinal bacteria before absorption. However, there is rather limited information about RRPC''s metabolites produced by intestinal bacteria and the intestinal absorbed constituents. In the present study, the metabolites were characterized after the aqueous extract of RRPC was incubated with the crude enzyme of human intestinal bacteria in vitro. The metabolic characteristics of glycosides in RRPC were figured out by comparing the metabolic profiles of emodin‐8‐O‐β‐d ‐glucopyranoside and polydatin between aqueous extract of RRPC and equivalent amounts of these two glycosides. The transitional constituents absorbed into blood were investigated in rats via intraduodental administration and portal vein intubation. A total of 38 prototype components and 43 metabolites were detected and characterized in vivo. The overall results demonstrated that the intestinal bacteria played an important role in the metabolism of RRPC, and the main metabolic pathways were hydrolysis in vitro, glucuronidation and sulfation in vivo.  相似文献   

3.
Dioscin (DIS), one of the most abundant bioactive steroidal saponins in Dioscorea sp., is used as a complementary medicine to treat coronary disease and angina pectoris in China. Although the pharmacological activities and pharmacokinetics of DIS have been well demonstrated, information regarding the final metabolic fates is very limited. This study investigated the in vivo metabolic profiles of DIS after oral administration by ultra‐performance liquid chromatography quadrupole time‐of‐flight mass spectrometry method. The structures of the metabolites were identified and tentatively characterized by means of comparing the molecular mass, retention time and fragmentation pattern of the analytes with those of the parent compound. A total of eight metabolites, including seven phase I and one phase II metabolites, were detected and tentatively identified for the first time. Oxidation, deglycosylation and glucuronidation were found to be the major metabolic processes of the compound in rats. In addition, a possible metabolic pathway on the biotransformation of DIS in vivo was proposed. This study provides valuable and new information on the metabolism of DIS, which will be helpful for further understanding its mechanism of action. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Marsdenia tenacissima, which is widely used as an anticancer herb in traditional Chinese medicine, has been shown to possess anticancer activity. However, its metabolic profile is poorly investigated. Tenacigenin B is the major steroidal skeleton of C‐21 steroids in M. tenacissima. Tenacissoside H and Tenacissoside I are detected at relatively high levels in M. tenacissima. Therefore, we studied their metabolic characteristics in human liver microsomes by ultra‐high‐performance liquid chromatography coupled with high‐resolution mass spectrometry. Fourteen metabolites were tentatively identified by accurate mass measurement and MS/MS fragmentation behavior. It was found that hydroxylation reactions were the major metabolic pathway of Tenacissoside H and Tenacissoside I in human liver microsomes, whereas the metabolic pathway of Tenacigenin B involved dehydrogenation reactions. This is the first time that the metabolic profile of C‐21 steroids from M. tenacissima has been explored in human liver microsomes, which is of great significance for subsequent pharmacokinetic and interaction research. Biotransformation in vivo or in vitro may influence the structure of a compound and change its activity. Identification of their fragmentation behaviors and metabolites provides valuable and new information for further understanding the anti‐tumor activity of M. tenacissima. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Helicid is an active natural aromatic phenolic glycoside ingredient originating from a well‐known traditional Chinese herbal medicine and has the significant effects of sedative hypnosis, anti‐inflammatory analgesia and antidepressant. In this study, we analyzed the potential metabolites of Helicid in rats by multiple mass defect filter and dynamic background subtraction in ultra‐high‐performance liquid chromatography–quadrupole time‐of‐flight mass spectrometry (UHPLC‐Q‐TOF‐MS). Moreover, we used a novel data processing method, ‘key product ions’, to rapidly detect and identify metabolites as an assistant tool. MetabolitePilot™ 2.0 software and PeakView™ 2.2 software were used for analyzing metabolites. Twenty metabolites of Helicid (including 15 phase I metabolites and five phase II metabolites) were detected by comparison with the blank samples. The biotransformation route of Helicid was identified as demethylation, oxidation, dehydroxylation, hydrogenation, decarbonylation, glucuronide conjugation and methylation. This is the first study simultaneously detecting and identifying Helicid metabolism in rats employing UHPLC‐Q‐TOF‐MS technology. This experiment not only proposed a method for rapidly detecting and identifying metabolites, but also provided useful information for further study of the pharmacology and mechanism of Helicid in vivo. Furthermore, it provided an effective method for the analysis of other aromatic phenolic glycosides metabolic components in vivo.  相似文献   

6.
In this paper, an ultra high performance liquid chromatography tandem mass spectrometric (UPLC‐ESI‐MS/MS) method in positive ion mode was established to systematically identify and to compare the major aconitum alkaloids and their metabolites in rat plasma and urine after oral administration of Fuzi extract. A total twenty‐nine components including twenty‐five C19‐diterpenoid alkaloids and four C20‐diterpenoid alkaloids were identified in Fuzi extract. Thirteen of the parent components and five metabolites were detected in rat plasma and sixteen parent compounds and six metabolites in urine. These parent components found in rat plasma and urine were mainly C19‐diterpenoid alkaloids. All of the metabolites in vivo were demethylated metabolites (phase I metabolites), which suggested that demethylation was the major metabolic pathway of aconitum alkaloids in vivo. A comparison of the parent components in rat plasma and urine revealed that 3‐deoxyacontine was found in plasma but not in urine, while kalacolidine, senbusine and 16‐β‐hydroxycardiopetaline existed in urine but not in plasma, which indicated that most alkaloids components were disposed and excreted in prototype form. This research provides some important information for further metabolic investigations of Fuzi in vivo.  相似文献   

7.
Triclosan is a widely used broad‐spectrum antibacterial agent that acts by specifically inhibiting enoyl–acyl carrier protein reductase. An in vitro metabolic study of triclosan was performed by using Sprague‐Dawley (SD) rat liver S9 and microsome, while the in vivo metabolism was investigated on SD rats. Twelve metabolites were identified by using in‐source fragmentation from high‐performance liquid chromatography/negative atmospheric pressure chemical ionization ion trap mass spectrometry (HPLC/APCI‐ITMS) analysis. Compared to electrospray ionization mass spectrometry (ESI‐MS) and tandem mass spectrometry (MS/MS) that gave little fragmentation for triclosan and its metabolites, the in‐source fragmentation under APCI provided intensive fragmentations for the structural identifications. The in vitro metabolic rate of triclosan was quantitatively determined by using HPLC/ESI‐ITMS with the monitoring of the selected triclosan molecular ion. The metabolism results indicated that glucuronidation and sulfonation were the major pathways of phase II metabolism and the hydroxylated products were the major phase I metabolites. Moreover, glucose, mercapturic acid and cysteine conjugates of triclosan were also observed in the urine samples of rats orally administrated with triclosan. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
The root of Cynanchum auriculatum (C. auriculatum ) Royle ex Wight has been shown to possess various pharmacological effects and has recently attracted much attention with respect to its potential role in antitumor activity. The C‐21 steroidal glycosides are commonly accepted as the major active ingredients of C. auriculatum . In this study, the antitumor abilities of different extracted fractions of the root bark and the root tuber of C. auriculatum were investigated by using a 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay in human cancer cell lines HepG2 and SMMC‐7721. The results showed that the chloroform and ethyl acetate fractions of the root tuber suppressed tumor cell growth strongly. To identify and characterize the chemical constituents of different active fractions, an ultra high performance liquid chromatography with triple‐quadrupole tandem mass spectrometry method was developed for the simultaneous quantitation of eight C‐21 steroidal glycosides. The analysis revealed that the C‐21 steroidal glycosides were concentrated in the chloroform and ethyl acetate fractions, and the total contents of different fractions in the root tuber were significantly higher than those of corresponding ones in the root bark. Furthermore, the C‐21 steroidal glycosides based on different types of aglucones were prone in different medicinal parts of C. auriculatum .  相似文献   

9.
Da‐Huang‐Xiao‐Shi decoction has been used to treat damp‐heat jaundice for centuries in China. However, the absorbed components of the decoction and their related metabolites are little known until now. In this work, an integrative strategy based on liquid chromatography coupled with mass spectrometry (time‐of‐flight/triple‐quadruple tandem) was adopted to effectively identify the prototypes and their metabolites and to speculate the possible transformation pathways among these compounds. Using pattern recognition approaches, the exogenous compounds in rat plasma were screened out from endogenous compounds and then distinguished into prototypes and metabolites according to the characteristic information from the self‐building database of Da‐Huang‐Xiao‐Shi decoction. On this basis, the metabolic profiles of main prototypes (such as iridoid glycosides, alkaloids, and anthraquinones) were proposed. As a result, a total of 62 related prototypes and their metabolites were detected and tentatively identified in rat plasma after administration, and among them, three prototypes were found for the first time. Glucuronidation and sulfation were deduced to be the main metabolic pathways of alkaloids, iridoid glycosides, and anthraquinones. The integrative strategy used in this study was an effective approach to rapidly discover and characterize the prototypes and their metabolites from a complex bio‐sample without the use of standard substances.  相似文献   

10.
Tianma‐Gouteng granule (TGG), a Chinese herbal formula preparation, is clinically used for the treatment of cardio‐cerebrovascular diseases such as hypertension, cerebral ischaemia, acute ischaemic stroke and Parkinson's disease. Although few reports have been published concerning the absorbed prototype components of TGG, the possible metabolic pathways of TGG in vivo remain largely unclear. In this study, a method using UPLC–Q/TOF MS was established for the detection and identification of the absorbed prototype components and related metabolites in rat plasma and bile after oral administration of TGG at high and normal clinical dosages. A total of 68 components were identified or tentatively identified in plasma and bile samples, including absorbed prototypes and their metabolites. The major absorbed components were gastrodin, isorhynchophylline, rhynchophylline, isocorynoxeine, corynoxeine, geissoschizine methyl ether baicalin, baicalein, wogonoside, wogonin, geniposidic acid, leonurine, 2,3,5,4′‐tetrahydroxystilbene‐2‐Oβ‐d ‐glucoside and emodin. The main metabolic pathways of these components involved phase I (isomerization, hydrolysis and reduction) and phase II (glucuronidation and sulfation) reaction, and the phase II biotransformation pathway was predominant. The present study provides rich information on the in vivo absorption and metabolism of TGG, and the results will be helpful for further studies on the pharmacokinetics and pharmacodynamics of TGG.  相似文献   

11.
Tai Y  Cao X  Li X  Pan Y 《Analytica chimica acta》2006,572(2):230-236
High-performance liquid chromatography coupled with electrospray tandem mass spectrometry (HPLC/ESI-MS/MS) was used to identify C-21 steroidal glycosides with immunological activities in roots of Cynanchum chekiangense. In the MS/MS spectra, fragmentation reactions of the [M + Na]+ were recorded to provide structural information about the glycosyl and aglycone moieties. To further confirm the fragments structures, off-line Fourier transform ion cyclotron resonance tandem mass spectrometry (FT-ICR-MS/MS) was also performed. In the study, four known steroidal glycosides cynascyroside C, chekiangensosides A and B, glaucoside H, and four novel steroidal glycosides chekiangensosides C, D, E and chekiangensoside A isomer were identified based on mass spectral data, NMR spectral data and standards. This is the first report on identifying steroidal glycosides in roots of C. chekiangense by HPLC/ESI-MS/MS directly, which could save time and material consuming efforts in traditional phytochemistry analysis.  相似文献   

12.
Gardenin A is one of the less abundant hydroxylated polymethoxyflavonoids (OH‐PMFs) in nature, and has many potential significant health benefits. In the present study, an efficient strategy was established using high‐performance liquid chromatography coupled with linear ion trap–Orbitrap mass spectrometer to profile the in vivo metabolic fate of gardenin A in rat plasma and various tissues. First, an online LC‐MSn data acquisition method was developed to trace all the probable metabolites. Second, a combination of offline data processing methods including extracted ion chromatography and multiple mass defect filters was employed to screen the common and uncommon metabolites from the background noise and endogenous components. Finally, structures of the metabolites were elucidated based on an accurate mass measurement, the diagnostic product ions of PMFs, and relevant drug biotransformation knowledge. Based on the proposed strategy, a total of 26 metabolites were observed and characterized. The results indicate that some biotransformations, such as methylation, demethoxylation, demethylation, glucuronide conjugation, sulfate conjugation and their composite reactions, have been discovered for OH‐PMFs. Moreover, some diagnostic biotransformation pathways are summarized. Overall, this study gives us a first insight into the in vivo metabolism of gardenin A. The study also provides a practical strategy for rapidly screening and identifying metabolites, which can be widely applied for the other biotransformations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
The calyces of Physalis alkekengi var. franchetii (Chinese Lantern, JDL) are well‐known as traditional Chinese medicine owing to its various therapeutic effects. However, the bioactive constituents responsible for the pharmacological effects of JDL and their metabolites in vivo are still unclear to date. In this paper, an ultra‐high‐pressure liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry (UHPLC/Q‐TOF‐MS/MS) method was established to identify absorbed constituents and in vivo metabolites in rat biological fluids after oral administration of JDL. Based on the proposed strategy, 33 compounds were observed in dosed rat biosamples. Twelve of 33 compounds were indicated as prototype components of JDL, and 21 compounds were predicted to be metabolites of JDL. Finally, the metabolic pathways were proposed, which were glucuronidation, sulfation, methylation and dehydroxylation for flavonoid constituents and sulfonation and hydroxylation for physalin consitituents. This is the first systematic study on the absorbed constituents and metabolic profiling of JDL and will provide a useful template for screening and characterizing the ingredients and metabolites of traditional Chinese medicine.  相似文献   

14.
Farfarae Flos, the dried flower buds of Tussilago farfara L., is usually used to treat coughs, bronchitic and asthmatic conditions as an important traditional Chinese medicine. Tussilagone and methl butyric acid tussilagin ester are seen as representatives of two kinds of active substances. In addition, the pyrrolizidine alkaloids, mainly senkirkine and senecionine, present in the herb can be hepatoxic. In this study, a rapid and sensitive ultra‐high‐performance liquid chromatography coupled with hybrid triple quadrupole time‐of‐flight mass spectrometry method was successfully applied to identify the metabolites of tussilagone, methl butyric acid tussilagin ester, senkirkine and senecionine. A total of 35, 37, 18 and nine metabolites of tussilagone, methl butyric acid tussilagin ester, senkirkine and senecionine in rats were tentatively identified. Hydrolysis, oxidation, reduction and demethylation were the major metabolic reactions for tussilagone and methl butyric acid tussilagin ester. The main biotransformation routes of senkirkine and senecionine were identified as demethylation, N‐methylation, oxidation and reduction. This study is the first reported analysis and characterization of the metabolites and the proposed metabolic pathways might provide further understanding of the metabolic fate of the chemical constituents after oral administration of Farfarae Flos extract in vivo.  相似文献   

15.
Rhizoma coptidis has been used for a long time in China owing to its anti-bacterial, anti-diabetes, anti-hyperlipidemia and anti-obesity activities. However, the in vivo biotransformation of Rhizoma coptidis is still unclear to date. In this study, a three-step strategy using UPLC-Q-TOF/MS was applied to clarify the in vivo absorbed constituents and metabolites in rats after oral administration of Rhizoma coptidis. First, alkaloids in Rhizoma coptidis extract were identified. Second, six abundant alkaloids (berberine, palmatine, coptisine, epiberberine, jatrorrhizine, and columbamine) were selected as representative prototypes and the metabolic fates of them in rats were investigated to obtain a database of Rhizoma coptidis-derived metabolites. Finally, the metabolic profiles of Rhizoma coptidis were fully elucidated based on the above-mentioned results. In summary, 29 alkaloids were identified in Rhizoma coptidis, and a database of Rhizoma coptidis-derived metabolites was obtained with 144 characterized metabolites. A total of 89 xenobiotics including 12 absorbed constituents and 77 metabolites were identified in dosed rat biosamples. Major metabolic pathways of Rhizoma coptidis were hydroxylation, reduction, methylation, demethylation, demethylenation, desaturation, glucuronidation and sulfation. This is the first systematic study on the in vivo absorbed constituents and metabolic profiling of Rhizoma coptidis and will be beneficial for its further studies.  相似文献   

16.
HPLC with diode array detection and ESI‐TOF‐MS was used for the study of the constituents in Apocynum venetum L. extracts and the metabolites in rat urine after oral administration of A. venetum L. extracts. A formula database of the known constituents in A. venetum L. was established, and 21 constituents were rapidly identified by accurately matching their molecular masses with the formulae of the compounds in the database. Furthermore, 34 metabolites were detected and elucidated in the rat urine. The scientific and plausible biotransformation pathways of the flavonoid components in A. venetum L. were also proposed together with the presentation of clues for potential mechanisms of bioactivity. This specific and sensitive HPLC–ESI‐TOF‐MS method can be used to identify the chemical components in the extracts of A. venetum L. and their metabolites in rat urine. This method can also be used to reveal the possible metabolic mechanisms of action of the extract components in vivo.  相似文献   

17.
(+)‐Catechin, a potential beneficial compound to human health, is widely distributed in plants and foods. A high‐performance liquid chromatography with diode array detector and combined with electrospray ionization ion trap time‐of‐flight multistage mass spectrometry method was applied to profile and identify the metabolites of (+)‐catechin in rats and to study the distribution of these metabolites in rat organs for the first time. In total, 51 phase II metabolites (44 new) and three phase I metabolites were tentatively identified, comprising 16 (+)‐catechin conjugates, 14 diarylpropan‐2‐ol metabolites, 6 phenyl valerolactone metabolites and 18 aromatic acid metabolites. Further, 19 phase II metabolites were new compounds. The in vivo metabolic reactions of (+)‐catechin in rats were found to be ring‐cleavage, sulfation, glucuronidation, methylation, dehydroxylation and dehydrogenation. The numbers of detected metabolites in urine, plasma, small intestine, kidney, liver, lung, heart, brain and spleen were 53, 23, 27, 9, 7, 5, 3, 2 and 1, respectively. This indicated that small intestine, kidney and liver were the major organs for the distribution of (+)‐catechin metabolites. In addition, eight metabolites were found to possess bioactivities according to literature. These results are very helpful for better comprehension of the in vivo metabolism of (+)‐catechin and its pharmacological actions, and also can give strong indications on the effective forms of (+)‐catechin in vivo. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Run‐zao‐zhi‐yang (RZZY) capsule, a traditional Chinese medicine formula, is popularly used for the treatment of dermatitis and eczema. However, few studies have been carried out on RZZY and its metabolites. In this study, we developed a three‐step strategy to rapidly characterize the chemical constituents and metabolites of RZZY using ultra‐high‐performance liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry. A total of 41 chemical components were characterized from RZZY. Among these, there are 11 flavonoids, six alkaloids, six stilbene glycosides, five anthraquinones and 13 other compounds. In addition, 18 prototypes and 35 metabolites were detected in rat plasma, urine and bile. This study offers an applicable approach for high‐throughput profiling and identification of chemical components and metabolites derived from traditional Chinese medicine formula in vivo, and also provides essential data for exploring bioactive ingredients and action mechanisms of RZZY.  相似文献   

19.
Flos Abelmoschus manihot is a traditional herbal medicine widely used in clinical practice to tackle chronic kidney disease (CKD) for thousands of years. Nowadays, many studies indicate that gut bacteria are closely related to the progression of CKD and CKD‐related complications. In this study, a UPLC‐Q‐TOF/MS method coupled with the MetaboLynx™ software was established and successfully applied to investigate the metabolites and metabolic profile of Flos A. manihot extract by intestinal bacteria from normal and CKD rats. Eight parent components and eight metabolites were characterized by their protonated ions. Among these compounds, 15 were detected in the two group samples while M16 was only determined in the CKD model samples. Compared with the quercetin‐type glycosides, fewer myricetin‐type and gossypetin‐type metabolites were obtained in the two group samples. These metabolites suggested that deglycosylation and methylation are the major metabolic pathways of Flos A. manihot extract. Few differences of metabolite classes were observed in the two group samples. However, the concentrations of aglycones such as quercetin, myricetin and gossypetin in the normal samples were notably higher than those in the CKD model samples. The results are important in unravelling the pharmacological effects of A. manihot and clarifying its mechanism of action in vivo .  相似文献   

20.
Polyphyllin I (PPI), a natural steroidal saponin originating from rihzome of Paris polyphylla , is a potential anticancer candidate. Previous pharmacokinetics study showed that the oral bioavailability of PPI was very low, which suggested that certain amount of PPI might be metabolized in vivo . However, to date, information regarding the final metabolic fates of PPI is very limited. In this study, metabolites of PPI and their pharmacokinetics in rats were investigated using UPLC‐QTOF‐MS/MS and LC‐TQ‐MS/MS. A total of seven putative metabolites, including six phase I and one phase II metabolites, were detected and identified with three exact structures by comparison with authentic standards for the first time. Oxidation, deglycosylation and glucuronidation were found to be the major metabolic processes of the compound in rats. The pharmacokinetics of prosapogenin A, trillin and diosgenin, three deglycosylation metabolites of PPI with definite anticancer effects, were further studied, which suggested that the metabolites underwent a prolonged absorption and slower elimination after intragastric administration of PPI at the dose of 500 mg/kg. This study provides valuable and new information on the metabolic fate of PPI, which will be helpful in further understanding its mechanism of action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号