首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
曹荣凯  张敏  于浩  秦建华 《色谱》2022,40(3):213-223
循环肿瘤细胞(CTCs)的分离分析一直是肿瘤相关研究中的热点方向,作为液体活检的重要标志物之一,其在外周血中的含量与癌症病发状况密切相关.然而人体血液中CTCs的含量非常低,通常来说仅有0~10个/mL,因此在开展临床血液样本中CTCs的检测前,往往需要对样本进行前处理,以实现CTCs的分离和富集.微流控芯片技术凭借样...  相似文献   

2.
杜晶辉  刘旭  徐小平 《色谱》2014,32(1):7-12
近年来,循环肿瘤细胞(CTCs)研究得到了越来越多的关注,许多研究报告已经证实其在肿瘤转移的早期诊断、治疗方案选择、个体化治疗及探索肿瘤转移机制等方面具有潜在的价值,然而CTCs在循环系统中的含量极低,这成为限制其临床相关应用的主要难点。微流控芯片技术具有低成本、快速、高通量及操作简单等优势,利用微流控芯片可实现CTCs的高速、高回收率、高纯度的分选富集,近年来得到广泛的关注。本文综述了近年来在微流控芯片内进行CTCs分选富集的研究并探讨了各种方法的优缺点,并在本研究团队的研究基础上进行了展望。  相似文献   

3.
郭珊  周翔 《化学进展》2021,33(1):1-12
从实体瘤脱落进入血液循环系统的肿瘤细胞即循环肿瘤细胞(CTCs)与肿瘤转移密切相关,因此CTCs检测对癌症患者的诊断、治疗监测、病情评估以及肿瘤转移机制研究具有重要意义.由于CTCs在体内含量极少、异质性、分布不均一,通过体外采血发展的CTCs检测技术虽然已取得很大进展,但仍然面临肿瘤细胞损失、失活、失真以及灵敏度低等...  相似文献   

4.
Circulating tumor cells (CTCs) play an essential role in the metastasis of tumors, and thus can serve as a valuable prognostic factor for malignant diseases. As a result, the ability to isolate and characterize CTCs is essential. This review underlines the potential of dielectrophoresis for CTCs enrichment. It begins by summarizing the key performance parameters and challenges of CTCs isolation using microfluidics. The two main categories of CTCs enrichment—affinity‐based and label‐free methods—are analysed, emphasising the advantages and disadvantages of each as well as their clinical potential. While the main argument in favour of affinity‐based methods is the strong specificity of CTCs isolation, the major advantage of the label‐free technologies is in preserving the integrity of the cellular membrane, an essential requirement for downstream characterization. Moving forward, we try to answer the main question: “What makes dielectrophoresis a method of choice in CTCs isolation?” The uniqueness of dielectrophoretic CTCs enrichment resides in coupling the specificity of the isolation process with the conservation of the membrane surface. The specificity of the dielectrophoretic method stems from the differences in the dielectric properties between CTCs and other cells in the blood: the capacitances of the malignantly transformed cellular membranes of CTCs differ from those of other cells. Examples of dielectrophoretic devices are described and their performance evaluated. Critical requirements for using dielectrophoresis to isolate CTCs are highlighted. Finally, we consider that DEP has the potential of becoming a cytometric method for large‐scale sorting and characterization of cells.  相似文献   

5.
循环肿瘤细胞(CTCs)是肿瘤研究和临床癌症诊断中的重要对象,也是"液体活检"的重要标志物.CTCs携带着肿瘤组织的遗传和表型信息,有助于肿瘤的早期诊断、个体化治疗和预后监测.然而,CTCs是一种极其罕见的细胞群体,在癌症患者外周血中十分稀少,这对从患者血液中分离CTCs并无损释放进行下游分析提出了挑战.目前,基于CT...  相似文献   

6.
《中国化学快报》2022,33(9):4157-4168
The emergence of disseminated metastasis is the leading cause of mortality in patients with malignant tumor. The pre-metastatic microenvironment, including the primary tumor-derived components, pre-metastatic niche (PMN), circulating tumor cells (CTCs), micro-metastases, and tumor immune microenvironment (TIM), are the crucial factors to initiate metastasis and form macro-metastases. It may be a more promising strategy for directly targeting pre-metastatic microenvironment-interrelated factors and cells before they have the chance to form secondary tumors to prevent metastasis. During recent years, a variety of nanosystems, with specific microstructures and functional properties, have been devised to selectively target pre-metastatic cells components and interrelated molecular, and exhibited strong potential on anti-metastatic therapy by absorbing and neutralizing primary tumor-derived components, preventing establishment of the PMN, eliminating the CTCs, eradicating the micro-metastases and modulating the TIM. In this review, we comprehensively review the emerging nanosystems based on the pre-metastatic microenvironments. Hopefully, this review can cast new lights for early preventing and attenuating metastatic progression.  相似文献   

7.
Kim MS  Sim TS  Kim YJ  Kim SS  Jeong H  Park JM  Moon HS  Kim SI  Gurel O  Lee SS  Lee JG  Park JC 《Lab on a chip》2012,12(16):2874-2880
Circulating tumor cells (CTCs) have gained increasing attention as physicians and scientists learn more about the role these extraordinarily rare cells play in metastatic cancer. In developing CTC technology, the critical criteria are high recovery rates and high purity. Current isolation methods suffer from an inherent trade-off between these two goals. Moreover, ensuring minimal cell stress and robust reproducibility is also important for the clinical application of CTCs. In this paper, we introduce a novel CTC isolation technology using selective size amplification (SSA) for target cells and a multi-obstacle architecture (MOA) filter to overcome this trade-off, improving both recovery rate and purity. We also demonstrate SSA-MOA's advantages in minimizing cell deformation during filter transit, resulting in more stable and robust CTC isolation. In this technique, polymer microbeads conjugated with anti-epithelial cell adhesion molecules (anti-EpCAM) were used to selectively size-amplify MCF-7 breast cancer cells, definitively differentiating from the white blood cells (WBCs) by avoiding the size overlap that compromises other size selection methods. 3 μm was determined to be the optimal microbead diameter, not only for size discrimination but also in maximizing CTC surface coverage. A multi-obstacle architecture filter was fabricated using silicon-on-glass (SOG) technology-a first such application of this fabrication technique-to create a precise microfilter structure with a high aspect ratio. The filter was designed to minimize cell deformation as simulation results predicted that cells captured via this MOA filter would experience 22% less moving force than with a single-obstacle architecture. This was verified by experiments, as we observed reliable cell capture and reduced cell deformation, with a 92% average recovery rate and 351 peripheral blood leukocytes (PBL) per millilitre (average). We expect the SSA-MOA platform to optimize CTC recovery rates, purity, and stability, increasing the sensitivity and reliability of such tests, thereby potentially expanding the utilization of CTC technologies in the clinic.  相似文献   

8.
Circulating tumor cells (CTCs) are an important biomarker for cancer prognosis and treatment monitoring. However, the heterogeneity of the physical and biological properties of CTCs limits the efficiency of various approaches used to isolate small numbers of CTCs from billions of normal blood cells. To address this challenge, we developed a lateral filter array microfluidic (LFAM) device to integrate size‐based separation with immunoaffinity‐based CTC isolation. The LFAM device consists of a serpentine main channel, through which most of a sample passes, and an array of lateral filters for CTC isolation. The unique device design produces a two‐dimensional flow, which reduces nonspecific, geometric capture of normal cells as typically observed in vertical filters. The LFAM device was further functionalized by immobilizing antibodies that are specific to the target cells. The resulting devices captured pancreatic cancer cells spiked in blood samples with (98.7±1.2) % efficiency and were used to isolate CTCs from patients with metastatic colorectal cancer.  相似文献   

9.
The analysis of circulating tumor cells (CTCs) is an important capability that may lead to new approaches for cancer management. CTC capture devices developed to date isolate a bulk population of CTCs and do not differentiate subpopulations that may have varying phenotypes with different levels of clinical relevance. Here, we present a new device for CTC spatial sorting and profiling that sequesters blood‐borne tumor cells with different phenotypes into discrete spatial bins. Validation data are presented showing that cancer cell lines with varying surface expression generate different binning profiles within the device. Working with patient blood samples, we obtain profiles that elucidate the heterogeneity of CTC populations present in cancer patients and also report on the status of CTCs within the epithelial‐to‐mesenchymal transition (EMT).  相似文献   

10.
纳米生物无机界面的研究是无机化学学科新兴的前沿领域之一。纳米结构的无机材料在仿生界面、细胞界面、生物检测界面等领域扮演着越来越重要的角色。近几年来, 无机纳米结构被尝试用于痕量循环肿瘤细胞(Circulating Tumor Cells, CTCs)分离的基础探索研究中, 并展现出非常吸引人的应用前景。痕量CTCs的高效分离对于癌症早期检测、术后监测及生物学研究等具有重要的意义。本文主要综述纳米生物无机界面在CTCs分离中的应用, 详细介绍其发展现状, 并对未来做一展望。  相似文献   

11.
纳米生物无机界面的研究是无机化学学科新兴的前沿领域之一。纳米结构的无机材料在仿生界面、细胞界面、生物检测界面等领域扮演着越来越重要的角色。近几年来,无机纳米结构被尝试用于痕量循环肿瘤细胞(Circulating Tumor Cells,CTCs)分离的基础探索研究中,并展现出非常吸引人的应用前景。痕量CTCs的高效分离对于癌症早期检测、术后监测及生物学研究等具有重要的意义。本文主要综述纳米生物无机界面在CTCs分离中的应用,详细介绍其发展现状,并对未来做一展望。  相似文献   

12.
Here we describe a combined microfluidic-micromagnetic cell separation device that has been developed to isolate, detect and culture circulating tumor cells (CTCs) from whole blood, and demonstrate its utility using blood from mammary cancer-bearing mice. The device was fabricated from polydimethylsiloxane and contains a microfluidic architecture with a main channel and redundant 'double collection' channel lined by two rows of dead-end side chambers for tumor cell collection. The microdevice design was optimized using computational simulation to determine dimensions, magnetic forces and flow rates for cell isolation using epithelial cell adhesion molecule (EpCAM) antibody-coated magnetic microbeads (2.8 μm diameter). Using this device, isolation efficiencies increased in a linear manner and reached efficiencies close to 90% when only 2 to 80 breast cancer cells were spiked into a small volume (1.0 mL) of blood taken from wild type mice. The high sensitivity visualization capabilities of the device also allowed detection of a single cell within one of its dead-end side chambers. When blood was removed from FVB C3(1)-SV40 T-antigen mammary tumor-bearing transgenic mice at different stages of tumor progression, cells isolated in the device using anti-EpCAM-beads and magnetically collected within the dead-end side chambers, also stained positive for pan-cytokeratin-FITC and DAPI, negative for CD45-PerCP, and expressed SV40 large T antigen, thus confirming their identity as CTCs. Using this isolation approach, we detected a time-dependent rise in the number of CTCs in blood of female transgenic mice, with a dramatic increase in the numbers of metastatic tumor cells appearing in the blood after 20 weeks when tumors transition to invasive carcinoma and exhibit increased growth of metastases in this model. Importantly, in contrast to previously described CTC isolation methods, breast tumor cells collected from a small volume of blood removed from a breast tumor-bearing animal remain viable and they can be easily removed from these devices and expanded in culture for additional analytical studies or potential drug sensitivity testing.  相似文献   

13.
The culture and expansion of circulating tumor cells (CTCs) for ex vivo assays plays an important role in precision medicine. However, it still represents a big challenge in translational research. Generating knowledge about the characteristics of CTCs can help to shed light about the metastasis process. Furthermore, ex vivo culture of CTCs might allow performing functional analyses and testing different drugs, to guide clinical therapies. In this work, we present a new methodology based on the use of nanosystems to support ex vivo culture of CTCs. We have formulated oil-in-water (O/W) nanoemulsions (NEs) composed by lipids and fatty acids, and have demonstrated that they can help increasing cell viability on different breast cancer cell lines. Moreover, we have generated a CTC model from breast cancer mice xenografts, to prove the ability of the NEs to facilitate their culture and expansion. Additionally, we have postulated a mechanism of action based on the cell consumption of the NEs, which are acting as energy suppliers, driving proliferation. This work corroborates the potential of nanotechnology to provide valuable tools for precision oncology, and the ability of our NEs to improve proliferation of breast cancer CTCs for the establishment of CTCs culture protocols.  相似文献   

14.
Bhagat AA  Hou HW  Li LD  Lim CT  Han J 《Lab on a chip》2011,11(11):1870-1878
Blood is a highly complex bio-fluid with cellular components making up >40% of the total volume, thus making its analysis challenging and time-consuming. In this work, we introduce a high-throughput size-based separation method for processing diluted blood using inertial microfluidics. The technique takes advantage of the preferential cell focusing in high aspect-ratio microchannels coupled with pinched flow dynamics for isolating low abundance cells from blood. As an application of the developed technique, we demonstrate the isolation of cancer cells (circulating tumor cells (CTCs)) spiked in blood by exploiting the difference in size between CTCs and hematologic cells. The microchannel dimensions and processing parameters were optimized to enable high throughput and high resolution separation, comparable to existing CTC isolation technologies. Results from experiments conducted with MCF-7 cells spiked into whole blood indicate >80% cell recovery with an impressive 3.25 × 10(5) fold enrichment over red blood cells (RBCs) and 1.2 × 10(4) fold enrichment over peripheral blood leukocytes (PBL). In spite of a 20× sample dilution, the fast operating flow rate allows the processing of ~10(8) cells min(-1) through a single microfluidic device. The device design can be easily customized for isolating other rare cells from blood including peripheral blood leukocytes and fetal nucleated red blood cells by simply varying the 'pinching' width. The advantage of simple label-free separation, combined with the ability to retrieve viable cells post enrichment and minimal sample pre-processing presents numerous applications for use in clinical diagnosis and conducting fundamental studies.  相似文献   

15.
Circulating tumor cells (CTCs) present in the bloodstream are strongly linked to the invasive behavior of cancer; therefore, their detection holds great significance for monitoring disease progression. Currently available CTC isolation tools are often based on tumor-specific antigen or cell size approaches. However, these techniques are limited due to the lack of a unique and universal marker for CTCs, and the overlapping size between CTCs and regular blood cells. Dielectrophoresis (DEP), governed by the intrinsic dielectric properties of the particles, is a promising marker-free, accurate, fast, and low-cost technique that enables the isolation of CTCs from blood cells. This study presents a continuous flow, antibody-free DEP-based microfluidic device to concentrate MCF7 breast cancer cells, a well-established CTC model, in the presence of leukocytes extracted from human blood samples. The enrichment strategy was determined according to the DEP responses of the corresponding cells, obtained in our previously reported DEP spectrum study. It was based on the positive-DEP integrated with hydrodynamic focusing under continuous flow. In the proposed device, the parylene microchannel with two inlets and outlets was built on top of rectangular and equally spaced isolated planar electrodes rotated certain degree relative to the main flow (13°). The recovery of MCF7 cells mixed with leukocytes was 74%–98% at a frequency of 1 MHz and a magnitude of 10–12 Vpp. Overall, the results revealed that the presented system successfully concentrates MCF7 cancer cells from leukocytes, ultimately verifying our DEP spectrum study, in which the enrichment frequency and separation strategy of the microfluidic system were determined.  相似文献   

16.
The development of early and personalized diagnostic protocol with rapid response and high accuracy is considered the most promising avenue to advance point-of-care testing for tumor diagnosis and therapy. Given the growing awareness of the limitations of conventional tissue biopsy for gathering tumor information, considerable interest has recently been aroused in liquid biopsy. Among a myriad of analytical approaches proposed for liquid biopsy, microfluidics-based separation and purification techniques possess merits of high throughput, low samples consumption, high flexibility, low cost, high sensitivity, automation capability and enhanced spatio-temporal control. These characteristics endow microfluidics to serve as an emerging and promising tool in tumor diagnosis and prognosis by identifying specific circulating tumor biomarkers. In this review, we will put our focus on three key categories of circulating tumor biomarkers, namely, circulating tumor cells (CTCs), circulating exosomes, and circulating nucleic acids (cNAs), and discuss the significant roles of microfluidics in the separation and analysis of circulating tumor biomarkers. Recent advances in microfluidic separation and analysis of CTCs, exosomes, and cNAs will be highlighted and tabulated. Finally, the current challenges and future niches of using microfluidic techniques in the separation and analysis of circulating tumor biomarkers will be discussed.  相似文献   

17.
The detection of the circulating tumor cells (CTCs) detached from solid tumors has emerged as a burgeoning topic for cancer diagnosis and treatment. The conventional CTC enrichment and identification mainly rely on the specific binding of the antibodies on the capture interface of the magnetic nanoparticles with the corresponding biomarkers on the cell membranes. However, these methods could easily generate false-negative results due to the extremely low concentration of CTCs and the internal heterogeneity of the tumor cells. Herein, with the aim of selectively identifying CTCs and improving the detection accuracy in peripheral blood, we designed the fluorometric “turn on” Au nanoparticles (DHANs) with the modification of a tumor-targeted moiety, dehydroascorbic acid (DHA) and a fluorometric aptamer, which could be “switched-on” by an over-expressed intracellular protein, namely hypoxia-inducible factor-1α (HIF 1α). This novel nanoformulated detection platform demonstrated the great capacity for visualizing various CTCs in peripheral blood with significantly improved detection efficiency and sensitivity. As a result, the nanoplatform has a great potential to be further applied for CTC detection in vitro or in vivo, which holds promise for extensive CTC studies.

The detection of the circulating tumor cells (CTCs) detached from solid tumors has emerged as a burgeoning topic for cancer diagnosis and treatment.  相似文献   

18.
Cancer is one of the leading causes of annual deaths worldwide, accounting for nearly 10 million deaths each year. Metastasis, the process by which cancer spreads across the patient's body, is the main cause of death in cancer patients. Because the rising trend observed in statistics of new cancer cases and cancer-related deaths does not allow for an optimistic viewpoint on the future—in relation to this terrible disease—the scientific community has sought methods to enable early detection of cancer and prevent the apparition of metastatic tumors. One such method is known as liquid biopsy, wherein a sample is taken from a bodily fluid and analyzed for the presence of CTCs or other cancer biomarkers (e.g., growth factors). With this objective, interest is growing by year in electrokinetically-driven microfluidics applied for the concentration, capture, filtration, transportation, and characterization of CTCs. Electrokinetic techniques—electrophoresis, dielectrophoresis, electrorotation, and electrothermal and EOF—have great potential for miniaturization and integration with electronic instrumentation for the development of point-of-care devices, which can become a tool for early cancer diagnostics and for the design of personalized therapeutics. In this contribution, we review the state of the art of electrokinetically-driven microfluidics for cancer cells manipulation.  相似文献   

19.
The detection of circulating tumor cells (CTCs) is crucial to early cancer diagnosis and the evaluation of cancer metastasis. However, it remains challenging due to the scarcity of CTCs in the blood. Herein, we report an ultrasensitive platform for the direct detection of CTCs using luminescent lanthanide nanoprobes. These were designed to recognize the epithelial cell adhesion molecules on cancer cells, allowing signal amplification through dissolution‐enhanced time‐resolved photoluminescence (TRPL) and the elimination of short‐lived autofluorescence interference. This enabled the direct detection of blood breast‐cancer cells with a limit of detection down to 1 cell/well of a 96‐well plate. Moreover, blood CTCs (≥10 cells mL?1) can be detected in cancer patients with a detection rate of 93.9 % (14/15 patients). We envision that this ultrasensitive detection platform with excellent practicality may provide an effective strategy for early cancer diagnosis and prognosis evaluation.  相似文献   

20.
Comprehensive phenotypic profiling of heterogeneous circulating tumor cells (CTCs) at single-cell resolution has great importance for cancer management. Herein, a novel spectrally combined encoding (SCE) strategy was proposed for multiplex biomarker profiling of single CTCs using a multifunctional nanosphere-mediated microfluidic platform. Different cellular biomarkers uniquely labeled by multifunctional nanosphere barcodes, possessing identical magnetic tags and distinct optical signatures, enabled isolation of heterogeneous CTCs with over 91.6 % efficiency and in situ SCE of phenotypes. By further trapping individual CTCs in ordered microstructures on chip, composite single-cell spectral signatures were conveniently and efficiently obtained, allowing reliable spectral-readout for multiplex biomarker profiling. This SCE strategy exhibited great potential in multiplex profiling of heterogeneous CTC phenotypes, offering new avenues for cancer study and precise medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号