首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Previous work in this laboratory established that the readily available F-ring aromatic analog of cyclopamine is a highly potent inhibitor of Hedgehog signaling. The synthesis and biological evaluation of two F-ring saturated analogs that are more potent than the F-ring aromatic structure are reported.  相似文献   

2.
Compounds known to be potent against a specific protein target may potentially contain a signature profile of common substructures that is highly correlated to their potency. These substructure profiles may be useful in enriching compound libraries or for prioritizing compounds against a specific protein target. With this objective in mind, a set of compounds with known potency against six selected kinases (2 each from 3 kinase families) was used to generate binary molecular fingerprints. Each fingerprint key represents a substructure that is found within a compound and the frequency with which the fingerprint occurs was then tabulated. Thereafter, a frequent pattern mining technique was applied with the aim of uncovering substructures that are not only well represented among known potent inhibitors but are also unrepresented among known inactive compounds and vice versa. Substructure profiles that are representative of potent inhibitors against each of the 3 kinase families were thus extracted. Based on our validation results, these substructure profiles demonstrated significant enrichment for highly potent compounds against their respective kinase targets. The advantages of using our approach over conventional methods in analyzing such datasets and its application in the mining of substructures for enriching compound libraries are presented.  相似文献   

3.
A successful structure-based design and synthesis of a class of highly potent conformationally constrained Smac mimetics is described. The most potent compound has a Ki value of 25 nM binding to the XIAP BIR3 protein and is 23 times more potent than natural Smac peptides. These potent Smac mimetics can serve as powerful chemical and pharmacological tools to further elucidate the role of Smac and its cellular binding partners in apoptosis regulation and may be developed as a new class of anti-cancer drugs.  相似文献   

4.
In this work, a tumor growth intervention by localized drug synthesis within the tumor volume, using the enzymatic repertoire of the tumor itself, is presented. Towards the overall success, molecular, macromolecular, and supramolecular glucuronide prodrugs were designed for a highly potent toxin, monomethyl auristatin E (MMAE). The lead candidate exhibited a fold difference in toxicity between the prodrug and the drug of 175, had an engineered mechanism to enhance the deliverable payload to tumours, and contained a highly potent toxin such that bioconversion of only a few prodrug molecules created a concentration of MMAE sufficient enough for efficient suppression of tumor growth. Each of these points is highly significant and together afford a safe, selective anticancer measure, making tumor-targeted glucuronides attractive for translational medicine.  相似文献   

5.
In this work, a tumor growth intervention by localized drug synthesis within the tumor volume, using the enzymatic repertoire of the tumor itself, is presented. Towards the overall success, molecular, macromolecular, and supramolecular glucuronide prodrugs were designed for a highly potent toxin, monomethyl auristatin E (MMAE). The lead candidate exhibited a fold difference in toxicity between the prodrug and the drug of 175, had an engineered mechanism to enhance the deliverable payload to tumours, and contained a highly potent toxin such that bioconversion of only a few prodrug molecules created a concentration of MMAE sufficient enough for efficient suppression of tumor growth. Each of these points is highly significant and together afford a safe, selective anticancer measure, making tumor‐targeted glucuronides attractive for translational medicine.  相似文献   

6.
Designed peptides derived from the islet amyloid polypeptide (IAPP) cross-amyloid interaction surface with Aβ (termed interaction surface mimics or ISMs) have been shown to be highly potent inhibitors of Aβ amyloid self-assembly. However, the molecular mechanism of their function is not well understood. Using solution-state and solid-state NMR spectroscopy in combination with ensemble-averaged dynamics simulations and other biophysical methods including TEM, fluorescence spectroscopy and microscopy, and DLS, we characterize ISM structural preferences and interactions. We find that the ISM peptide R3-GI is highly dynamic, can adopt a β-like structure, and oligomerizes into colloid-like assemblies in a process that is reminiscent of liquid–liquid phase separation (LLPS). Our results suggest that such assemblies yield multivalent surfaces for interactions with Aβ40. Sequestration of substrates into these colloid-like structures provides a mechanistic basis for ISM function and the design of novel potent anti-amyloid molecules.  相似文献   

7.
We recently developed an orthogonal, high-throughput assay to identify peptides that self-assemble into potent, equilibrium pores in synthetic lipid bilayers. Here, we use this assay as a high-throughput screen to select highly potent pore-forming peptides from a 7776-member rational combinatorial peptide library based on the sequence of the natural pore-forming peptide toxin melittin. In the library we varied ten critical residues in the melittin sequence, chosen to test specific structural hypotheses about the mechanism of pore formation. Using the new high-throughput assay, we screened the library for gain-of-function sequences at a peptide to lipid ratio of 1:1000 where native melittin is not active. More than 99% of the library sequences were also inactive under these conditions. A small number of library members (0.1%) were highly active. From these we identified 14 potent, gain-of-function, pore-forming sequences. These sequences differed from melittin in only 2-6 amino acids out of 26. Some native residues were highly conserved and others were consistently changed. The two factors that were essential for gain-of-function were the preservation of melittin's proline-dependent break in the middle of the helix and the improvement and extension the amphipathic nature of the α-helix. In particular the highly cationic carboxyl-terminal sequence of melittin, is consistently changed in the gain-of-function variants to a sequence that it is capable of participating in an extended amphipathic α-helix. The most potent variants reside in a membrane-spanning orientation, in contrast to the parent melittin, which is predominantly surface bound. This structural information, taken together with the high-throughput tools developed for this work, enable the identification, refinement and optimization of pore-forming peptides for many potential applications.  相似文献   

8.
A successful structure-based design of a class of non-peptide small-molecule MDM2 inhibitors targeting the p53-MDM2 protein-protein interaction is reported. The most potent compound 1d binds to MDM2 protein with a Ki value of 86 nM and is 18 times more potent than a natural p53 peptide (residues 16-27). Compound 1d is potent in inhibition of cell growth in LNCaP prostate cancer cells with wild-type p53 and shows only a weak activity in PC-3 prostate cancer cells with a deleted p53. Importantly, 1d has a minimal toxicity to normal prostate epithelial cells. Our studies provide a convincing example that structure-based strategy can be employed to design highly potent, non-peptide, cell-permeable, small-molecule inhibitors to target protein-protein interaction, which remains a very challenging area in chemical biology and drug design.  相似文献   

9.
L-DMDP, prepared from D-gulonolactone, is a highly specific inhibitor of a number of plant and mammalian alpha-glucosidases [between 2 and 4 orders of magnitude more potent than the enantiomeric natural product DMDP] but is not an inhibitor of bacterial and yeast alpha-glucosidases. Additionally N-butyl-DMDP is a potent inhibitor of ceramide-specific glucosyltransferase but N-butyl-L-DMDP shows no inhibition.  相似文献   

10.
An efficient synthesis of a highly potent and selective IP (PGI(2) receptor) agonist that is not structurally analogous to PGI(2) is described. This synthesis is accomplished through the following key steps: Nucleophilic ring-opening of 3-(4-chlorophenyl)-oxazolidin-2-one prepared by a one-pot procedure with 4-piperidinol and selective O-alkylation of 1-(2-(4-chlorophenylamino)ethyl)piperidin-4-ol. The obtained compound is a potent and selective IP agonist displaying a long duration of action.  相似文献   

11.
Previous work from our laboratory has established that the readily available steroid-based analog 2 of cyclopamine 1 is, like 1, a highly potent inhibitor of Hedgehog signaling. The first structure-activity relationship studies on 2, i.e., the synthesis and biological evaluation of both the C-17 epi analog 4 and the C-3 deoxy analog 11, both of which are more potent than cyclopamine 1, are described. The implications of these results for the emerging pharmacophore of these Sonic Hedgehog signaling inhibitors are discussed.  相似文献   

12.
The compound URB754 was recently identified as a potent inhibitor of the endocannabinoid-deactivating enzyme monoacylglycerol lipase (MGL) by screening of a commercial chemical library. Based on HPLC/MS, NMR and EI/MS analyses, the present paper shows that the MGL-inhibitory activity attributed to URB754 is in fact due to a chemical impurity present in the commercial sample, identified as bis(methylthio)mercurane. Although this organomercurial compound is highly potent at inhibiting MGL (IC50 = 11.9 +/- 1.1 nM), its biological use is prohibited by its toxicity and target promiscuity.  相似文献   

13.
[chemical structure: see text]. Two natural products have been synthesized using a ZnCl2-mediated benzylic coupling reaction. Both are potent inhibitors of the GTPase activity of FtsZ, a highly conserved protein that is essential for bacterial cytokinesis.  相似文献   

14.
Salicylihalamide A is the first member of a growing class of macrocyclic salicylate natural products that induce a variety of interesting phenotypes in cultured mammalian cells. Salicylihalamide A was reported to be a unique and highly differential cytotoxin and a potent inhibitor of the mammalian vacuolar (H(+))-ATPase. The total synthesis of both enantiomers of salicylihalamide A, a revision of the absolute configuration assigned to the natural product, and extensive structure-function studies with synthetic salicylihalamide variants are reported. These studies were possible only due to a highly efficient synthetic strategy that features (1) a remarkably E-selective ring-closing olefin metathesis to construct the 12-membered benzolactone skeleton 29, (2) a mild stereocontrolled elaboration to E-alkenyl isocyanate 41, and (3) addition of carbon, oxygen, and sulfur nucleophiles to isocyanate 41 to obtain salicylihalamide A and congeners. We demonstrate for the first time that salicylihalamide A is a potent inhibitor of fully purified reconstituted V-ATPase from bovine brain, and have identified several similarly potent side chain modified derivatives, including salicylihalamide dimers 43-45. In combination, these studies have laid the foundation for ongoing studies aimed at a comprehensive understanding of salicylihalamide's mode-of-action, of potential relevance to the development of lead compounds for the treatment of osteoporosis and cancer.  相似文献   

15.
Designed peptides derived from the islet amyloid polypeptide (IAPP) cross‐amyloid interaction surface with Aβ (termed interaction surface mimics or ISMs) have been shown to be highly potent inhibitors of Aβ amyloid self‐assembly. However, the molecular mechanism of their function is not well understood. Using solution‐state and solid‐state NMR spectroscopy in combination with ensemble‐averaged dynamics simulations and other biophysical methods including TEM, fluorescence spectroscopy and microscopy, and DLS, we characterize ISM structural preferences and interactions. We find that the ISM peptide R3‐GI is highly dynamic, can adopt a β‐like structure, and oligomerizes into colloid‐like assemblies in a process that is reminiscent of liquid–liquid phase separation (LLPS). Our results suggest that such assemblies yield multivalent surfaces for interactions with Aβ40. Sequestration of substrates into these colloid‐like structures provides a mechanistic basis for ISM function and the design of novel potent anti‐amyloid molecules.  相似文献   

16.
A highly potent anti-MRSA sesquiterpenoid has been isolated from Ulmus davidiana var. japonica, which has been traditionally used to treat infectious diseases in Korea. This naturally occurring antibiotic was identified as mansonone F (1). This compound has been found to be highly active specifically against MRSA and showed an MIC range of 0.39-3.13 microg/ml which is comparable to that of vancomycin.  相似文献   

17.
A highly stereoselective and practical synthetic method for ZK118182, which is chemically and metabolically stable and a biologically potent PGD2-analogue developed by Schering AG, is reported.  相似文献   

18.
Structure activity studies of N-phenylrolipram derivatives have led to the identification of highly potent PDE4 inhibitors. The potential of these inhibitors for cellular activity was routinely assessed in an assay of fMLP induced oxidative burst in human eosinophils. Since first generation PDE4 inhibitors have been plagued with a number of unwanted side effects, parallel structure activity studies for competition with the [3H]-rolipram binding site in rat brain were performed. In this fashion 5-[4-(3-cyclopentyloxy-4-methoxyphenyl)-2-oxo-pyrrolidin-1-yl]-3-(3-methoxybenzyloxy)benzoic acid N',N'-dimethylhydrazide (22) was identified as a potent inhibitor of PDE4 which exhibits >1000 fold selectivity versus PDE3, and is a nanomolar inhibitor in all the cellular assays tested. Studies on the stereoselectivity of PDE4 inhibition of this class of rolipram based compounds revealed, that for example (S)-11 is a more potent inhibitor than (R)-11. This effect can also be observed in primary human cells where the (S)-enantiomer is about 10 fold more potent than the corresponding (R)-enantiomer.  相似文献   

19.
Tannic acid was found to be a highly potent inhibitor of human placenta aldose reductase. The most potent inhibitory component of the tannic acid was isolated and identified as penta-O-galloyl-beta-D-glucose, which showed an IC50 value of 70 nM. The inhibition by the gallotannin was reversible and of mixed type with respect to DL-glyceraldehyde as the varied substrate.  相似文献   

20.
Iodomethyl-, chloromethyl-, and fluoromethyldimethylsulfonium salts, 4b-d, have been synthesized and are observed to be highly reactive molecules that exhibit extraordinary diversity with respect to the nature of their reactivity, undergoing facile direct substitution (S(N)2) reactions, but also being highly susceptible to electron-transfer reactions. Cyclic voltametry experiments indicated that the iodomethyldimethylsulfonium compound, 4b, is a potent electron acceptor, even surpassing the reactivity of perfluoro-n-alkyl iodides in that capacity. The iodo- and chloromethyldimethylsulfonium salts, 4b,c, as well as the analogous iodomethyltrimethylammonium salt, 3a, are shown to be reactive SET acceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号