首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 62 毫秒
1.
A detailed study of the geometry, aromatic character, electronic and magnetic properties for a series of positively charged N-doped polycyclic aromatic hydrocarbons (PAHs) was performed. Magnetic properties of the examined molecules were analyzed by means of the magnetically induced current density calculated using the diamagnetic-zero version of the continuous transformation of origin of current density (CTOCD-DZ) method. The comparative study of the local aromaticity of the studied molecules was performed using several different indices: energy effect (ef), harmonic oscillator model of aromaticity (HOMA) index, six centre delocalization index (SCI) and nucleus independent chemical shifts (NICS). The presence of N-atoms in the inner rings was found to cause a planarity distortion in the studied N-doped systems. The geometric changes and charged nature of the studied N-doped systems do not significantly influence the current density and the local aromaticity distribution in comparison with the corresponding parent benzenoid hydrocarbons. The present study demonstrates how quantum chemical calculations can be used for rational design of novel PAHs and for fine tuning of their properties.  相似文献   

2.
The Diels–Alder reactivity of maleic anhydride towards the bay regions of planar polycyclic aromatic hydrocarbons was explored computationally in the DFT framework. The process becomes more and more exothermic and the associated activation barriers become lower and lower when the size of the system increases. This enhanced reactivity follows an exponential behavior that reaches its maximum for systems having 18–20 benzenoid rings in their structures. This peculiar behavior was analyzed in detail by using the activation strain model of reactivity in combination with energy decomposition analysis. The influence of the change in the aromaticity of the polycyclic compound during the process on the respective activation barriers was also studied.  相似文献   

3.
One of the central issues of molecular electronics (ME) is the study of the molecule–metal electrode contacts, and their implications for the conductivity, charge‐transport mechanism, and mechanical stability. In fact, stochastic on/off switching (blinking) reported in STM experiments is a major problem of single‐molecule devices, and challenges the stability and reliability of these systems. Surprisingly, the ambiguous STM results all originate from devices that bind to the metallic electrode through a one‐atom connection. In the present work, DFT is employed to study and compare the properties of a set of simple acenes that bind to metallic electrodes with an increasing number of connections, in order to determine whether the increasing numbers of anchoring groups have a direct repercussion on the stability of these systems. The conductivities of the three polycyclic aromatic hydrocarbons are calculated, as well as their transmission spectra and current profiles. The thermal and mechanical stability of these systems is studied by pulling and pushing the metal–molecule connection. The results show that molecules with more than one connection per electrode exhibit greater electrical efficiency and current stability.  相似文献   

4.
Antiaromatic molecules have been predicted to exhibit increased electron transport properties when placed between two nanoelectrodes compared to their aromatic analogues. While some studies have demonstrated this relationship, others have found no substantial increase. We use atomistic simulations to establish a general relationship between the electronic spectra of aromatic, antiaromatic, and quinoidal molecules and illustrate its implications for electron transport. We compare the electronic properties of a series of aromatic-antiaromatic counterparts and show that antiaromaticity effectively p-dopes the aromatic electronic spectra. As a consequence, the conducting properties of aromatic-antiaromatic analogues are closely related. For similar attachment points to the electrodes, an interference feature is expected in the HOMO-LUMO gap of one whenever it is absent in the other one. We demonstrate how the relative conductance of aromatic-antiaromatic pairs can be tuned and even reversed through the choice of chemical linker groups. Our work provides a general picture relating connectivity, (anti)aromaticity, and quantum interference and establishes new design rules for single molecule circuits.  相似文献   

5.
We systematically investigate the interactions and magnetic properties of a series of 3d transition‐metal (TM; Sc–Ni) atoms adsorbed on perfect graphene (G6), and on defective graphene with a single pentagon (G5), a single heptagon (G7), or a pentagon–heptagon pair (G57) by means of spin‐polarized density functional calculations. The TM atoms tend to adsorb at hollow sites of the perfect and defective graphene, except for G6Cr, G5Cr, and G5Ni. The binding energies of TMs on defective graphene are remarkably enhanced and show a V‐shape, with GNCr and GNMn having the lowest binding energies. Furthermore, complicated element‐ and defect‐dependent magnetic behavior is observed in GNTM. Particularly, the magnetic moments of GNTM linearly increase by about 1 μB and follow a hierarchy of G7TM<G57TM<G5TM as the TM varies from Sc to Mn, and the magnetic moments begin to decrease afterward; by choosing different types of defects, the magnetic moments can be tuned over a broad range, for example, from 3 to 6 μB for GNCr. The intriguing element‐ and defect‐dependent magnetic behavior is further understood from electron‐ and back‐donation mechanisms.  相似文献   

6.
We present a novel method for time-dependent density functional theory calculations on dynamic linear response and electron density evolution in the real-time domain with the finite basis expansion approach of conventional quantum chemistry. To demonstrate the validity and efficiency of this method, dynamic polarizabilities of a water chain and diphenylene molecules are computed by employing the Chebyshev interpolation algorithm, which was developed by Baer and co-workers. The calculated dynamic polarizabilities show good agreement with those obtained from conventional linear response calculations. The density evolution in the real-time domain with application of a long-duration electric field gives electronic conduction in molecules, where a dynamic process of charge transfer is observed with the snapshots of response density in real time. Charge transfer oscillating with the frequency of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) gap is shown in a diphenylene molecule while there is little change in time for a water chain.  相似文献   

7.
8.
A series of new benzothiazole-derived donor–acceptor-based compounds (Comp1–4) were synthesized and characterized with the objective of tuning their multifunctional properties, i.e., charge transport, electronic, and optical. All the proposed structural formulations (Comp1–4) were commensurate using FTIR, 1H NMR, 13C NMR, ESI-mass, UV–vis, and elemental analysis techniques. The effects of the electron-donating group (-CH3) and electron-withdrawing group (-NO2) on the optoelectronic and charge transfer properties were studied. The substituent effect on absorption was calculated at the TD-B3LYP/6-31+G** level in the gas and solvent phases. The effect of solvent polarity on the absorption spectra using various polar and nonpolar solvents, i.e., ethanol, acetone, DMF, and DMSO was investigated. Light was shed on the charge transport in benzothiazole compounds by calculating electron affinity, ionization potential, and reorganization energies. Furthermore, the synthesized compounds were used to prepare thin films on the FTO substrate to evaluate the charge carrier mobility and other related device parameters with the help of I-V characteristic measurements.  相似文献   

9.
10.
The photophysical properties of a multicomponent [1]rotaxane bearing a β‐cyclodextrin ring covalently connected to an axle comprising an azobenzene photoisomerisable moiety and a naphthalimide‐type fluorescent stopper are investigated by a combined experimental and computational study. The absorption and fluorescence spectra, and particularly the induced circular dichroism (ICD) signal, are determined. The latter shows a sign relation that cannot be rationalised in terms of the simple general rules commonly employed to analyse the ICD spectra of achiral guests encircled by chiral hosts. To assist the interpretation of experimental results, DFT and time‐dependent (TD) DFT calculations are performed to explore the availability of low‐energy conformations and to model their spectroscopic response. Molecular dynamics simulations performed in water show the interconversion of a number of conformers, the contribution of which to the ICD signal is in agreement with the observation.  相似文献   

11.
The relationship between electronic and geometrical structures in acceptor‐substituted cyclopropanes has been investigated by B3LYP DFT calculations and photoelectron (PE) spectroscopy. The spectra of cyclopropanecarbaldehyde ( 2 ), cyclopropanecarboxylic acid ( 3 ), cyclopropanecarboxylic acid methyl ester ( 4 ), nitrocyclopropane ( 5 ), isothiocyanatocyclopropane ( 6 ), cyanocyclopropane ( 7 ), and 1,1‐dicyanocyclopropane ( 8 ) have been analyzed. The first ionization potential (IP1) of compounds 2 – 5 was found to be 0.1–0.4 eV higher than that of the analogous isopropyl derivatives indicating—contrary to expectation—that in these compounds the cyclopropyl group acts as a weaker electron donor than an isopropyl group. In the other compounds, IP1 values are 0.4–1.1 eV lower than in the open‐chain congeners. The Walsh orbitals ωS and ωA of the three‐membered ring are substantially stabilized to different extents by interactions with substituent orbitals, and this is reflected in shortened distal and elongated vicinal C? C bonds. Although the nitro group in compound 5 causes large stabilizations of both ωS and ωA, their energy difference Δω remains rather small; this is in agreement with a relatively small difference Δr of the C? C bond lengths. For the investigated monosubstituted cyclopropanes 2 – 7 , the largest effects with respect to Δω and Δr are caused by the formyl group in carboxaldehyde 2 . Comparison of the results for nitriles 7 and 8 indicates that the effects of the cyano groups are additive. A linear relationship between Δω and Δr was established by B3LYP DFT calculations on geometrically distorted cyclopropane ( 1 ) and from the PE data of 2 – 8 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号