首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Electrochemical generation of ammonia (NH3) from nitrogen (N2) using renewable electricity is a desirable alternative to current NH3 production methods, which consume roughly 1 % of the world's total energy use. The use of catalysts to manipulate the required electron and proton transfer reactions with low energy input is also a chemical challenge that requires development of fundamental reaction pathways. This work presents an approach to the electrochemical reduction of N2 into NH3 using a coordination complex of aluminum(III), which facilitates NH3 production at −1.16 V vs. SCE. Reactions performed under 15N2 liberate 15NH3. Electron paramagnetic resonance spectroscopic characterization of a reduced intermediate and investigations of product inhibition, which limit the reaction to sub-stoichiometric, are also presented.  相似文献   

2.
基于可再生能源的水电解制氢技术(英文)   总被引:2,自引:0,他引:2  
迟军  俞红梅 《催化学报》2018,39(3):390-394
在全球变暖,污染日益严重的今天,发展可再生清洁能源成为了当务之急.然而可再生能源(风能、太阳能)本身具有间断特性,这就需要寻找一种合适的能量媒介储存能量来保证其能源的稳定输出.当前,我国各地不断出现弃风、弃光和弃水电事件,据国家能源局的公开数据,仅2016年,全国弃风电量497×10~8 kW·h,弃光率仅西部地区就已达20%,弃风弃光日臻凸显[1].从地域方面来看,我国光伏发电呈现东中西部共同发展格局,其中,西部地区主要发展集中式光伏发电,新疆、甘肃、青海、宁夏的累计装机容量均超过5×10~6 k W·h,而中东部地区除集中式光伏发电外,还重点建设分布式光伏发电,江苏、浙江、山东、安徽的分布式光伏装机规模已超过100万千瓦.我国光伏发电集中开发的西北地区也存在严重的弃光问题.根据中国光伏行业协会发布的报告,我国的弃光现象主要集中于西北的新疆、甘肃、青海、宁夏和陕西五省区.据统计,2016年,五省区光伏发电量287.17×10~8 k W·h,弃光电量70.42×10~8 k W·h,弃光率为19.81%,各省区光伏发电并网运行数据如表格所示.可以看出,新疆、甘肃光伏发电运行较为困难,弃光电量绝对值高,弃光率分别达到32.23%和30.45%[2].在新能源体系中,氢能是一种理想的二次能源,与其它能源相比,氢热值高,其能量密度(140 MJ/kg)是固体燃料(50MJ/kg)的两倍多.且燃烧产物为水,是最环保的能源,既能以气、液相的形式存储在高压罐中,也能以固相的形式储存在储氢材料中,如金属氢化物、配位氢化物、多孔材料等.对可再生和可持续能源系统,氢气是一种极好的能量存储介质.氢气作为能源载体的优势在于:(1)氢和电能之间通过电解水技术可实现高效相互转换;(2)压缩的氢气有很高的能量密度;(3)氢气具有成比例放大到电网规模应用的潜力.制氢的方式有很多,包括:化石燃料重整、分解、光解或水解等.全球每年总共需要约40亿吨氢气,95%以上的氢气是通过化石燃料重整来获得,生产过程必然排出CO_2,而电解水技术利用可再生能源获得的电能进行规模产氢,可实现CO_2的零排放,可将具有强烈波动特性的风能、太阳能转换为氢能,更利于储存与运输.所存储的氢气可用于燃料电池发电,或单独用作燃料气体,也可作为化工原料.通过水电解方式获得的氢气纯度较高,可达99.9%以上.  相似文献   

3.
This study investigated a system which simultaneously produced electricity and stored energy in the MFC integrated MnO2-modified capacitive bioanode. Compared to the noncapacitive anode, the maximum power density of MFC with MnO2-modified bioanode reached 16.47 W m?3, which was 3.5 times higher than that of the bare anode (4.71 W m?3). During the charging-discharging experiment, the MFC with a capacitance bioanode has a higher average peak current density of 5.06 mA cm?2 and 36 times larger than that with the bare bioanode. With the capacitive electrode, it is possible to let the MFC at the same time for production and storage of renewable electricity. Then two different operations (intermittent operation and continuous operation) of the MFC with a capacitive bioanode were studied to degrade Cr (VI) in cathode chamber. Results showed that the Cr (VI) removal rates of intermittent operation are much higher than that of continuous operation under the same time in the closed circuit state. This is due to the good ability of storing and releasing electron of the biological capacitor with MnO2 modified material. And this study showed that MFC with a capacitive bioanode is better adapted to treat heavy metal pollutants by intermittent mode.  相似文献   

4.
Electrochemical conversion of CO2 into fuels using electricity generated from renewable sources helps to create an artificial carbon cycle. However, the low efficiency and poor stability hinder the practical use of most conventional electrocatalysts. In this work, a 2D hierarchical Pd/SnO2 structure, ultrathin Pd nanosheets partially capped by SnO2 nanoparticles, is designed to enable multi‐electron transfer for selective electroreduction of CO2 into CH3OH. Such a structure design not only enhances the adsorption of CO2 on SnO2, but also weakens the binding strength of CO on Pd due to the as‐built Pd–O–Sn interfaces, which is demonstrated to be critical to improve the electrocatalytic selectivity and stability of Pd catalysts. This work provides a new strategy to improve electrochemical performance of metal‐based catalysts by creating metal oxide interfaces for selective electroreduction of CO2.  相似文献   

5.
Electrical discharges are increasingly used to dissociate CO2 in CO and O2. This reaction is the first step in the way for the synthesis of value-added compounds from CO2 by using renewable electricity. If efficient, this technology might allow at the same time recycling CO2 and storing renewable energy in chemical form. At present, while the dissociation degree is measured in the reactor exhaust, little is experimentally known about the dissociation kinetics in the discharge and post-discharge. This knowledge is however critical to increasing the overall efficiency of the plasma process. To estimate the time dependence of the CO2 dissociation following a discharge event, we have coupled a LIF diagnostics to a nanosecond repetitively pulsed discharge in a mixture of CO2 and H2O. This paper discusses a procedure to obtain data on the time evolution of the CO2 dissociation, its limits and future perspectives. In addition, the local gas temperature is measured as well. We find that a few microseconds after the discharge pulse, CO2 is highly dissociated with a temperature around 2500 K. In about 100 µs, the temperature decreases at about 1500 K while the dissociation is reduced by about a factor of three.  相似文献   

6.
《中国化学快报》2023,34(7):108046
Hydrogen production from water electrolysis using renewable electricity is a highly promising route to solve the energy crisis of human society. The tetragonal 3d-transition metal selenide with metallic feature has been discovered to efficiently catalyze the hydrogen evolution electrocatalysis; however, its performance is still unsatisfactory and further improvement is necessary. Herein, the hydrogen evolution reaction of the functional tetragonal 3d-transition metal selenide with the heteroatom-dopant as well as cationic vacancy is fully investigated by means of density functional theory calculations. Our results identify 53 promising candidates endowed with good activity due to the absolute free energy of hydrogen adsorption |∆GH| ≤ 0.30 eV wherein 15 candidates with |∆GH| ≤ 0.09 eV possess compelling performance in comparison with the benchmark Pt material. Interestingly, the functional CuSe systems account for 29 out of 53 candidates, being high attractive for experimental synthesis. According to the analysis of electronic structure, the enhanced performance stems from the upshift of the sp orbitals, which benefits for the improved affinity toward hydrogen capture. This work provides new direction and guidance for the design of novel electrocatalysts.  相似文献   

7.
Selectively electrochemical conversion of CO2 into organic fuel using renewable electricity is one of the most sought‐after processes. In this paper, we report the electrochemical reduction of CO2 (CO2RR) on the nanoporous Ag electrodes made of compacted Ag nanoparticles (AgNPs), which were prepared by one‐step reduction in the water phase with or without the surfactant sodium dodecyl sulfate (SDS). The scanning electron microscope (SEM) characterizations show that the compacted Ag electrodes have the nanoporous morphology formed by stacking AgNPs. Compared with the nanoporous Ag electrode without SDS modification (C‐AgNPs), the SDS‐modified AgNPs electrode (C‐AgNPs‐SDS) is highly effective in improving selective CO production in a wide range of potentials (–0.69 V — –1.19 V, vs. RHE), with a Faradaic efficiency of 92.2% and a current density of –8.23 mA·cm–2 for CO production at –0.79 V (vs. RHE). C‐AgNPs‐SDS is also catalytically stable with only less than 7% deactivation after 8 h of continuous electrolysis.  相似文献   

8.
Electrochemical reduction of CO2 provides a sustainable solution to address the intermittent renewable electricity storage while recycling CO2 to produce fuels and chemicals. Highly efficient catalytic materials and reaction systems are required to drive this process economically. This Review highlights the new trends in advancing the electrochemical reduction of CO2 by developing and designing nanostructured heterogeneous catalysts. The activity, selectivity and reaction mechanism are significantly affected by the nano effects in nanostructured heterogeneous catalysts. In the future, energy efficiency and current density in electrochemical reduction of CO2 need to be further improved to meet the requirements for practical applications.  相似文献   

9.
In this opinion piece, we highlight and discuss beyond state-of-the-art transition metal oxide materials for the oxygen evolution reaction and oxygen reduction reaction, which are essential for the renewable energy conversion and storage of H2 to electricity. We pinpoint some of the synthetic routes taken and discuss essential measurements required in the highlighted works, which others should undertake to achieve highly active and stable oxygen evolution reaction and oxygen reduction reaction catalysts in both acidic and alkaline media.  相似文献   

10.
Powered by renewable electricity, the electrochemical reduction of nitrogen to ammonia is proposed as a promising alternative to the energy‐ and capital‐intensive Haber–Bosch process, and has thus attracted much attention from the scientific community. However, this process suffers from low NH3 yields and Faradaic efficiency. The development of more effective electrocatalysts is of vital importance for the practical applications of this reaction. Of the reported catalysts, single‐atom catalysts (SACs) show the significant advantages of efficient atom utilization and unsaturated coordination configurations, which offer great scope for optimizing their catalytic performance. Herein, progress in state‐of‐the‐art SACs applied in the electrocatalytic N2 reduction reaction (NRR) is discussed, and the main advantages and challenges for developing more efficient electrocatalysts are also highlighted.  相似文献   

11.
Hydrogen production from water via electrolysis in acid is attracting extensive attention as an attractive alternative approach to replacing fossil fuels. However, the simultaneous evolution of H2 and O2 requires a fluorine‐containing proton exchange membrane to prevent the gases from mixing while using the same space to concentrate the gases, which significantly increases the cost and reduces the flexibility of this approach. Here, a battery electrode based on the highly reversible enolization reaction of pyrene‐4,5,9,10‐tetraone is first introduced as a solid‐state proton buffer to separate the O2 and H2 evolution of acidic water electrolysis in space and time, through which the gas mixing issue can be avoided without using any membrane. This process allows us to separately consider H2 and O2 production according to the variation in input power (e.g., the renewable energy) and/or the location for H2 concentration, thus showing high flexibility for H2 production.  相似文献   

12.
The possible exhaustion of fossil fuels in the near future and soaring global energy demand have driven the search for new types of sustainable and renewable alternatives. Perovskite (CH3NH3PbX3, X = I, Br, Cl) solar cells are a type of solar cell based on a perovskite absorber, most commonly a tin halide-based or hybrid organic–inorganic lead material, as the visible-light sensitizer layer, which produces electricity from sunlight. Recently, perovskite solar cells have received substantial worldwide attention. Compared with traditional solar cells, the perovskite solar cells can obtain high efficiency with a simple architecture and via a cost-effective process. In the latest 5 years, the efficiency of perovskite solar cells to convert power has skyrocketed from 3.8 % to more than 19.3 %. It is the fastest advancing solar technology to date. The highest efficiency demonstrated by perovskite solar cells is higher than that of dye-sensitized solar cells (DSSCs). A lager number of research groups have demonstrated that perovskite solar cells may ultimately boost efficiency as high as 25 %. The high efficiency and cheap production costs make it evident that perovskite solar cells have great potential to be commercialized soon. In this review, the history, materials, processing and architecture of solar cells are discussed to obtain a better understanding of high-performance perovskite solar cells.  相似文献   

13.
Photocatalytic hydrogen (H2) production represents a very promising but challenging contribution to a clean, sustainable and renewable energy system. The photocatalyst material plays a key role in photocatalytic H2 production, and it has proven difficult to obtain corrosion resistant, chemically stable, visible light harvesting and highly efficient photocatalysts, which have their band edges matching the O2 and H2 production levels. Nanoscience and nanotechnology are opening a new vista in the development of highly active, nanostructured photocatalysts with large surface areas for optimized light absorption, minimized distances (or times) for charge-carrier transport, and further favorable properties. Our focus here is on recently developed nanostructured photocatalysts. In particular, the particle size, chemical composition (including dopants), microstructure, crystal phase, morphology, surface modification, bandgap and flat-band potential of the nanophotocatalysts have shown a visible effect on photocatalytic H2 production rates, which may be further increased by adding sensitizers, cocatalysts or scavengers. Finally, potential directions required to push this research field a step further are highlighted.  相似文献   

14.
The energy transition from fossil fuels to renewables is already ongoing, but it will be a long and difficult process because the energy system is a gigantic and complex machine. Key renewable energy production data show the remarkable growth of solar electricity technologies and indicate that crystalline silicon photovoltaics (PV) and wind turbines are the workhorses of the first wave of renewable energy deployment on the TW scale around the globe. The other PV alternatives (e.g., copper/indium/gallium/selenide (CIGS) or CdTe), along with other less mature options, are critically analyzed. As far as fuels are concerned, the situation is significantly more complex because making chemicals with sunshine is far more complicated than generating electric current. The prime solar artificial fuel is molecular hydrogen, which is characterized by an excellent combination of chemical and physical properties. The routes to make it from solar energy (photoelectrochemical cells (PEC), dye‐sensitized photoelectrochemical cells (DSPEC), PV electrolyzers) and then synthetic liquid fuels are presented, with discussion on economic aspects. The interconversion between electricity and hydrogen, two energy carriers directly produced by sunlight, will be a key tool to distribute renewable energies with the highest flexibility. The discussion takes into account two concepts that are often overlooked: the energy return on investment (EROI) and the limited availability of natural resources—particularly minerals—which are needed to manufacture energy converters and storage devices on a multi‐TW scale.  相似文献   

15.
The electroreduction of carbon dioxide using renewable electricity is an appealing strategy for the sustainable synthesis of chemicals and fuels. Extensive research has focused on the production of ethylene, ethanol and n-propanol, but more complex C4 molecules have been scarcely reported. Herein, we report the first direct electroreduction of CO2 to 1-butanol in alkaline electrolyte on Cu gas diffusion electrodes (Faradaic efficiency=0.056 %, j1-Butanol=−0.080 mA cm−2 at −0.48 V vs. RHE) and elucidate its formation mechanism. Electrolysis of possible molecular intermediates, coupled with density functional theory, led us to propose that CO2 first electroreduces to acetaldehyde-a key C2 intermediate to 1-butanol. Acetaldehyde then undergoes a base-catalyzed aldol condensation to give crotonaldehyde via electrochemical promotion by the catalyst surface. Crotonaldehyde is subsequently electroreduced to butanal, and then to 1-butanol. In a broad context, our results point to the relevance of coupling chemical and electrochemical processes for the synthesis of higher molecular weight products from CO2.  相似文献   

16.
Electrochemically reducing CO2 into fuels using renewable electricity is a contemporary global challenge that requires significant advances in catalyst design. Photodeposition techniques were used to screen ternary alloys of Cu‐Zn‐Sn, which includes brass and bronze, for the electrocatalytic reduction of CO2 to CO and formate. This analysis identified Cu0.2Zn0.4Sn0.4 and Cu0.2Sn0.8 to be capable of reaching Faradaic efficiencies of >80 % for CO and formate formation, respectively, and capable of achieving partial current densities of 3 mA cm−2 at an overpotential of merely 200 mV.  相似文献   

17.
The incorporation of CO2 into organic compounds is currently one of the most active research topics in organic chemistry, because CO2 is an abundant, inexpensive, nontoxic, and renewable C1 source. However, CO2 is also a thermodynamically stable and kinetically inert gaseous compound, and as such, special strategies are required to activate CO2 and incorporate it into organic compounds. In particular, because the carbon atom adjacent to the nitrogen atom of amine derivatives is positively charged, umpolung carboxylation, which is a difficult chemical process, should be considered for the production of α‐amino acids by using CO2. In this Minireview, we summarize recent synthetic methods for α‐amino acids that use CO2 as a carboxylic acid unit.  相似文献   

18.
Electrochemical CO2 reduction reaction (CO2RR) with renewable electricity is a potentially sustainable method to reduce CO2 emissions. Palladium supported on cost‐effective transition‐metal carbides (TMCs) are studied to reduce the Pd usage and tune the activity and selectivity of the CO2RR to produce synthesis gas, using a combined approach of studying thin films and practical powder catalysts, in situ characterization, and density functional theory (DFT) calculations. Notably, Pd/TaC exhibits higher CO2RR activity, stability and CO Faradaic efficiency than those of commercial Pd/C while significantly reducing the Pd loading. In situ measurements confirm the transformation of Pd into hydride (PdH) under the CO2RR environment. DFT calculations reveal that the TMC substrates modify the binding energies of key intermediates on supported PdH. This work suggests the prospect of using TMCs as low‐cost and stable substrates to support and modify Pd for enhanced CO2RR activity.  相似文献   

19.
Power‐to‐X concepts promise a reduction of greenhouse gas emissions simultaneously guaranteeing a safe energy supply even at high share of renewable power generation, thus becoming a cornerstone of a sustainable energy system. Power‐to‐syngas, that is, the electrochemical conversion of steam and carbon dioxide with the use of renewably generated electricity to syngas for the production of synfuels and high‐value chemicals, offers an efficient technology to couple different energy‐intense sectors, such as “traffic and transportation” and “chemical industry”. Syngas produced by co‐electrolysis can thus be regarded as a key‐enabling step for a transition of the energy system, which offers additionally features of CO2‐valorization and closed carbon cycles. Here, we discuss advantages and current limitations of low‐ and high‐temperature co‐electrolysis. Advances in both fundamental understanding of the basic reaction schemes and stable high‐performance materials are essential to further promote co‐electrolysis.  相似文献   

20.
Effective wastewater treatment and electricity generation using dual-chamber microbial fuel cell (MFC) will require a better understanding of how operational parameters affect system performance. Therefore, the main aim of this study is to investigate the bioelectricity production in a dual-chambered MFC-operated batch mode under different operational conditions. Initially, platinum (Pt) and mixed metal oxide titanium (Ti-TiO2) electrodes were used to investigate the influence of the electrode materials on the power generation at initial dissolved organic carbon (DOC) concentration of 400 mg/L and cycle time of 15 days. MFC equipped with Ti-TiO2 electrode performed better and was used to examine the effect of influent DOC concentration and cycle time on MFC performance. Increasing influent DOC concentration resulted in improving electricity generation, corresponding to a 1.65-fold increase in power density. However, decrease in cycle time from 15 to 5 days adversely affected reactor performance. Maximum DOC removal was 90?±?3 %, which was produced at 15-day cycle time with an initial DOC of 3,600 mg/L, corresponding to maximum power generation of about 7,205 mW/m2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号