首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
    
Taking a definite stance: Protein fibrils are often associated with disorder and polymorphism, but the prion fibrils of Ure2p are shown (through solid-state NMR spectroscopy) to be highly ordered, and the conformations of the globular domain to be more restricted within the fibrils (black; see scheme) than in Ure2p single crystals?(red). This finding implies that steric impairment is at the origin of the [URE3] phenotype in yeast.  相似文献   

4.
5.
6.
A clever combination: an in situ solid-state NMR analysis of CsmA proteins in the heterogeneous environment of the photoreceptor of Chlorobaculum tepidum is reported. Using different combinations of 2D and 3D solid-state NMR spectra, 90?% of the CsmA resonances are assigned and provide on the basis of chemical shift data information about the structure and conformation of CsmA in the CsmA-bacteriochlorophyll a complex.  相似文献   

7.
Curli are functional bacterial amyloids produced by an intricate biogenesis machinery. Insights into their folding and regulation can advance our understanding of amyloidogenesis. However, gaining detailed structural information of amyloids, and their tendency for structural polymorphisms, remains challenging. Herein we compare high‐quality solid‐state NMR spectra from biofilm‐derived and recombinantly produced curli and provide evidence that they adopt a similar, well‐defined β‐solenoid arrangement. Curli subunits consist of five sequence repeats, resulting in severe spectral overlap. Using segmental isotope labeling, we obtained the unambiguous sequence‐specific resonance assignments and secondary structure of one repeat, and demonstrate that all repeats are most likely structurally equivalent.  相似文献   

8.
9.
    
Solid‐state NMR spectroscopy is an emerging tool for structural studies of crystalline, membrane‐associated, sedimented, and fibrillar proteins. A major limitation for many studies is still the large amount of sample needed for the experiments, typically several isotopically labeled samples of 10–20 mg each. Here we show that a new NMR probe, pushing magic‐angle sample rotation to frequencies around 100 kHz, makes it possible to narrow the proton resonance lines sufficiently to provide the necessary sensitivity and spectral resolution for efficient and sensitive proton detection. Using restraints from such spectra, a well‐defined de novo structure of the model protein ubiquitin was obtained from two samples of roughly 500 μg protein each. This proof of principle opens new avenues for structural studies of proteins available in microgram, or tens of nanomoles, quantities that are, for example, typically achieved for eukaryotic membrane proteins by in‐cell or cell‐free expression.  相似文献   

10.
11.
12.
13.
Five new polymorphs and one hydrated form of 2‐thiobarbituric acid have been isolated and characterised by solid‐state methods. In both the crystalline form II and in the hydrate form, the 2‐thiobarbituric molecules are present in the enol form, whereas only the keto isomer is present in crystalline forms I (reported in 1967 by Calas and Martinex), III , V and VI . In form IV , on the other hand, a 50:50 ordered mixture of enol/keto molecules is present. All new forms have been characterised by single‐crystal X‐ray diffraction, 1D and 2D (1H, 13C, and 15N) solid‐state NMR spectroscopy, Raman spectroscopy and X‐ray powder diffraction at variable temperature. It has been possible to induce keto–enol conversion between the forms by mechanical methods. The role of hydrogen‐bond interactions in determining the relative stability of the polymorphs and as a driving force in the conversions has been ascertained. To the best of the authors’ knowledge, the 2‐thiobarbituric family of crystal forms represents the richest collection of examples of tautomeric polymorphism so far reported in the literature.  相似文献   

14.
15.
    
Solid bases, such as SBA‐15‐oxynitrides, have attracted considerable interest for potential applications as catalysts in important industrial processes. Reported herein is that by simply tuning the temperature of nitridation (ammonolysis), the catalytic activity of these solid bases can be enhanced. Solid‐state NMR spectroscopy and XPS studies provided the reasoning behind this change in activity.  相似文献   

16.
    
Current distance measurements between spin‐labels on multimeric protonated proteins using double electron–electron resonance (DEER) EPR spectroscopy are generally limited to the 15–60 Å range. Here we show how DEER experiments can be extended to dipolar evolution times of ca. 80 μs, permitting distances up to 170 Å to be accessed in multimeric proteins. The method relies on sparse spin‐labeling, supplemented by deuteration of protein and solvent, to minimize the deleterious impact of multispin effects and substantially increase the apparent spin‐label phase memory relaxation time, complemented by high sensitivity afforded by measurements at Q‐band. We demonstrate the approach using the tetradecameric molecular machine GroEL as an example. Two engineered surface‐exposed mutants, R268C and E315C, are used to measure pairwise distance distributions with mean values ranging from 20 to 100 Å and from 30 to 160 Å, respectively, both within and between the two heptameric rings of GroEL. The measured distance distributions are consistent with the known crystal structure of apo GroEL. The methodology presented here should significantly expand the use of DEER for the structural characterization of conformational changes in higher order oligomers.  相似文献   

17.
18.
    
On an atomic scale and with high sensitivity, solid‐state NMR spectroscopy can provide information about the electronic spin density and coupling mechanisms in paramagnetic compounds. The picture shows how the hyperfine splitting collapses through relaxation. Insights into which compounds are suitable and which approximations have to be made are given.

  相似文献   


19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号