共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Kristopher J. Harris Stanislav L. Veinberg Christopher R. Mireault Adonis Lupulescu Lucio Frydman Robert W. Schurko 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(48):16469-16475
Nitrogen is an element of utmost importance in chemistry, biology and materials science. Of its two NMR‐active isotopes, 14N and 15N, solid‐state NMR (SSNMR) experiments are rarely conducted upon the former, due to its low gyromagnetic ratio (γ) and broad powder patterns arising from first‐order quadrupolar interactions. In this work, we propose a methodology for the rapid acquisition of high quality 14N SSNMR spectra that is easy to implement, and can be used for a variety of nitrogen‐containing systems. We demonstrate that it is possible to dramatically enhance 14N NMR signals in spectra of stationary, polycrystalline samples (i.e., amino acids and active pharmaceutical ingredients) by means of broadband cross polarization (CP) from abundant nuclei (e.g., 1H). The BR oadband A diabatic IN version C ross‐ P olarization ( BRAIN–CP ) pulse sequence is combined with other elements for efficient acquisition of ultra‐wideline SSNMR spectra, including W ideband U niform‐ R ate S mooth‐ T runcation ( WURST ) pulses for broadband refocusing, C arr– P urcell M eiboom– G ill ( CPMG ) echo trains for T2‐driven S/N enhancement, and frequency‐stepped acquisitions. The feasibility of utilizing the BRAIN–CP/WURST–CPMG sequence is tested for 14N, with special consideration given to (i) spin‐locking integer spin nuclei and maintaining adiabatic polarization transfer, and (ii) the effects of broadband polarization transfer on the overlapping satellite transition patterns. The BRAIN–CP experiments are shown to provide increases in signal‐to‐noise ranging from four to ten times and reductions of experimental times from one to two orders of magnitude compared to analogous experiments where 14N nuclei are directly excited. Furthermore, patterns acquired with this method are generally more uniform than those acquired with direct excitation methods. We also discuss the proposed method and its potential for probing a variety of chemically distinct nitrogen environments. 相似文献
4.
Jörn Schmedt auf der Günne Dr. 《Angewandte Chemie (International ed. in English)》2009,48(19):3401-3403
On an atomic scale and with high sensitivity, solid‐state NMR spectroscopy can provide information about the electronic spin density and coupling mechanisms in paramagnetic compounds. The picture shows how the hyperfine splitting collapses through relaxation. Insights into which compounds are suitable and which approximations have to be made are given.
5.
6.
Untangling a Repetitive Amyloid Sequence: Correlating Biofilm‐Derived and Segmentally Labeled Curli Fimbriae by Solid‐State NMR Spectroscopy 下载免费PDF全文
Dr. Tobias Schubeis Puwei Yuan Dr. Mumdooh Ahmed Dr. Madhu Nagaraj Dr. Barth‐Jan van Rossum Dr. Christiane Ritter 《Angewandte Chemie (International ed. in English)》2015,54(49):14669-14672
Curli are functional bacterial amyloids produced by an intricate biogenesis machinery. Insights into their folding and regulation can advance our understanding of amyloidogenesis. However, gaining detailed structural information of amyloids, and their tendency for structural polymorphisms, remains challenging. Herein we compare high‐quality solid‐state NMR spectra from biofilm‐derived and recombinantly produced curli and provide evidence that they adopt a similar, well‐defined β‐solenoid arrangement. Curli subunits consist of five sequence repeats, resulting in severe spectral overlap. Using segmental isotope labeling, we obtained the unambiguous sequence‐specific resonance assignments and secondary structure of one repeat, and demonstrate that all repeats are most likely structurally equivalent. 相似文献
7.
8.
Jérôme Cuny Eric Furet Dr. Régis Gautier Dr. Laurent Le Pollès Dr. Chris J. Pickard Prof. Jean‐Baptiste d'Espinose de Lacaillerie Dr. 《Chemphyschem》2009,10(18):3320-3329
The application of periodic density functional theory‐based methods to the calculation of 95Mo electric field gradient (EFG) and chemical shift (CS) tensors in solid‐state molybdenum compounds is presented. Calculations of EFG tensors are performed using the projector augmented‐wave (PAW) method. Comparison of the results with those obtained using the augmented plane wave + local orbitals (APW+lo) method and with available experimental values shows the reliability of the approach for 95Mo EFG tensor calculation. CS tensors are calculated using the recently developed gauge‐including projector augmented‐wave (GIPAW) method. This work is the first application of the GIPAW method to a 4d transition‐metal nucleus. The effects of ultra‐soft pseudo‐potential parameters, exchange‐correlation functionals and structural parameters are precisely examined. Comparison with experimental results allows the validation of this computational formalism. 相似文献
9.
De Novo 3D Structure Determination from Sub‐milligram Protein Samples by Solid‐State 100 kHz MAS NMR Spectroscopy 下载免费PDF全文
Dr. Vipin Agarwal Susanne Penzel Kathrin Szekely Riccardo Cadalbert Emilie Testori Andres Oss Jaan Past Prof. Ago Samoson Prof. Matthias Ernst Dr. Anja Böckmann Prof. Beat H. Meier 《Angewandte Chemie (International ed. in English)》2014,53(45):12253-12256
Solid‐state NMR spectroscopy is an emerging tool for structural studies of crystalline, membrane‐associated, sedimented, and fibrillar proteins. A major limitation for many studies is still the large amount of sample needed for the experiments, typically several isotopically labeled samples of 10–20 mg each. Here we show that a new NMR probe, pushing magic‐angle sample rotation to frequencies around 100 kHz, makes it possible to narrow the proton resonance lines sufficiently to provide the necessary sensitivity and spectral resolution for efficient and sensitive proton detection. Using restraints from such spectra, a well‐defined de novo structure of the model protein ubiquitin was obtained from two samples of roughly 500 μg protein each. This proof of principle opens new avenues for structural studies of proteins available in microgram, or tens of nanomoles, quantities that are, for example, typically achieved for eukaryotic membrane proteins by in‐cell or cell‐free expression. 相似文献
10.
Various aerosils surface modified with silane reagents were prepared and investigated by 29Si solid state NMR spectroscopy. The mode of bonding onto the silanol surface (mono- or divalent) can be specified by comparison
with chemical shifts from solution. A detailed analysis also leads to the detection of products formed via hydrosilylation
reactions. A rough quantification of the surface loading can be obtained by a signal deconvolution process of the silanol
resonances on the Aerosil surface. 相似文献
11.
Fast Li Ion Dynamics in the Solid Electrolyte Li7P3S11 as Probed by 6,7Li NMR Spin‐Lattice Relaxation 下载免费PDF全文
The development of safe and long‐lasting all‐solid‐state batteries with high energy density requires a thorough characterization of ion dynamics in solid electrolytes. Commonly, conductivity spectroscopy is used to study ion transport; much less frequently, however, atomic‐scale methods such as nuclear magnetic resonance (NMR) are employed. Here, we studied long‐range as well as short‐range Li ion dynamics in the glass‐ceramic Li7P3S11. Li+ diffusivity was probed by using a combination of different NMR techniques; the results are compared with those obtained from electrical conductivity measurements. Our NMR relaxometry data clearly reveal a very high Li+ diffusivity, which is reflected in a so‐called diffusion‐induced 6Li NMR spin‐lattice relaxation peak showing up at temperatures as low as 313 K. At this temperature, the mean residence time between two successful Li jumps is in the order of 3×108 s?1, which corresponds to a Li+ ion conductivity in the order of 10?4 to 10?3 S cm?1. Such a value is in perfect agreement with expectations for the crystalline but metastable glass ceramic Li7P3S11. In contrast to conductivity measurements, NMR analysis reveals a range of activation energies with values ranging from 0.17 to 0.26 eV, characterizing Li diffusivity in the bulk. In our case, through‐going Li ion transport, when probed by using macroscopic conductivity spectroscopy, however, seems to be influenced by blocking grain boundaries including, for example, amorphous regions surrounding the Li7P3S11 crystallites. As a result of this, long‐range ion transport as seen by impedance spectroscopy is governed by an activation energy of approximately 0.38 eV. The findings emphasize how surface and grain boundary effects can drastically affect long‐range ionic conduction. If we are to succeed in solid‐state battery technology, such effects have to be brought under control by, for example, sophisticated densification or through the preparation of samples that are free of any amorphous regions that block fast ion transport. 相似文献
12.
Chao Jun JING Liu Sheng CHEN Yi SHI Xi Gao JIN 《中国化学快报》2005,16(11):1519-1522
^13C spin-lattice relaxation times (T1) of a conjugated polymer MEH-PPV in polymer/ layered silicate nanocomposites together with the steady state fluorescence emission and transient fluorescence decay measurements have been investigated. The T1 values of the conjugated carbons decrease dramatically according to the reduction of polymer concentration in the nano composites, while the fluorescence life times (τ) show a linear prolonging tendency. The results are explained from the point of view of molecular dynamics. 相似文献
13.
Saad Sene Marc Reinholdt Dr. Guillaume Renaudin Dr. Dorothée Berthomieu Prof. Claudio M. Zicovich‐Wilson Prof. Christel Gervais Dr. Philippe Gaveau Prof. Christian Bonhomme Dr. Yaroslav Filinchuk Prof. Mark E. Smith Prof. Jean‐Marie Nedelec Dr. Sylvie Bégu Dr. P. Hubert Mutin Dr. Danielle Laurencin 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(3):880-891
Boronic acids (R‐B(OH)2) are a family of molecules that have found a large number of applications in materials science. In contrast, boronate anions (R‐B(OH)3?) have hardly been used so far for the preparation of novel materials. Here, a new crystalline phase involving a boronate ligand is described, Ca[C4H9‐B(OH)3]2, which is then used as a basis for the establishment of the spectroscopic signatures of boronates in the solid state. The phase was characterized by IR and multinuclear solid‐state NMR spectroscopy (1H, 13C, 11B and 43Ca), and then modeled by periodic DFT calculations. Anharmonic OH vibration frequencies were calculated as well as NMR parameters (by using the Gauge Including Projector Augmented Wave—GIPAW—method). These data allow relationships between the geometry around the OH groups in boronates and the IR and 1H NMR spectroscopic data to be established, which will be key to the future interpretation of the spectra of more complex organic–inorganic materials containing boronate building blocks. 相似文献
14.
Bernhard Blümich Hans Wolfgang Spiess 《Angewandte Chemie (International ed. in English)》1988,27(12):1655-1672
NMR spectroscopy is an effective method not only for examining liquid samples but also for characterizing molecular sturcture, order and dynamics in amorphous and ordered solids. Recent developments in the area of solid-state NMR spectroscopy span from model-dependent studies of conventional one-dimensional spectra to the more definitive two-dimensional (2D) spectra which provide more specific information. For example, with 2D-NMR spectroscopy it is possible to determine the orientational distribution functions of molecular segments in drawn polymers and to distinguish different mechanisms of complex molecular motions. Following an introduction to basic NMR spectroscopy, an overview of the current state-of-the-art of 2D methods in solid-state NMR spectroscopy is presented and demonstrated with selected examples. 相似文献
15.
16.
17.
18.
Monometallic Ni0 and Heterobimetallic Ni0/AuI Complexes of Tripodal Phosphine Ligands: Characterization in Solution and in the Solid State and Catalysis 下载免费PDF全文
Kyle J. Cluff Dr. Nattamai Bhuvanesh Prof. Janet Blümel 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(28):10138-10148
The tridentate chelate nickel complexes [(CO)Ni{(PPh2CH2)3CMe}] ( 2 ), [(CO)Ni{(PPh2CH2CH2)3SiMe}] ( 6 ), and [Ph3PNi{(PPh2CH2CH2)3SiMe}] ( 7 ), as well as the bidentate complex [(CO)2Ni{(PPh2CH2)2CMeCH2PPh2}] ( 3 ) and the heterobimetallic complex [(CO)2Ni{(PPh2CH2)2CMeCH2Ph2PAuCl}] ( 4 ), have been synthesized and fully characterized in solution. All 1H and 13C NMR signal assignments are based on 2D‐NMR methods. Single crystal X‐ray structures have been obtained for all complexes. Their 31P CP/MAS (cross polarization with magic angle spinning) NMR spectra have been recorded and the isotropic lines identified. The signals were assigned with the help of their chemical shift anisotropy (CSA) data. All complexes have been tested regarding their catalytic activity for the cyclotrimerization of phenylacetylene. Whereas complexes 2 – 4 display low catalytic activity, complex 7 leads to quantitative conversion of the substrate within four hours and is highly selective throughout the catalytic reaction. 相似文献
19.
Dr. Pierre Thureau Dr. Fabio Ziarelli Dr. André Thévand Prof. Dr. Rachel W. Martin Prof. Dr. Patrick J. Farmer Dr. Stéphane Viel Dr. Giulia Mollica 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(34):10689-10700
Melanin is the most widespread pigment in the animal kingdom. Despite its importance, its detailed structure and overall molecular architecture remain elusive. Both eumelanin (black) and pheomelanin (red) occur in the human body. These two melanin compounds show very different responses to UV‐radiation exposure, which could relate to their microscopic features. Herein, the structural properties and motional behavior of natural eu‐ and pheomelanin extracted from black and red human hair are investigated by means of solid‐state NMR spectroscopy. Several 1D and 2D NMR spectroscopic techniques were combined to highlight the differences between the two forms of the pigment. The quantitative analysis of the 1H NMR wide‐line spectra extracted from 2D 1H–13C LG‐WISE experiments revealed the presence of two dynamically distinguishable components in both forms. Remarkably, the more mobile fraction of the pigment showed a higher mobility with respect to the proteinaceous components that coexist in the melanosome, which is particularly evident for the red pigment. An explanation of the observed effects takes into account the different architecture of the proteinaceous matrix that constitutes the physical substrate onto which melanin polymerizes within the eu‐ and pheomelanosomes. Further insight into the molecular structure of the more mobile fraction of pheomelanin was also obtained by means of the analysis of 2D 1H–13C INEPT experiments. Our view is that not only structural features inherent in the pure pigment, but also the role of the matrix structure in defining the overall melanin supramolecular arrangement and the resulting dynamic behavior of the two melanin compounds should be taken into account to explain their functions. The reported results could pave a new way toward the explanation of the molecular origin of the differences in the photoprotection activity displayed by black and red melanin pigments. 相似文献
20.
Ekkehard Lindner Stefan Brugger Stefan Steinbrecher Erich Plies Hermann A. Mayer 《无机化学与普通化学杂志》2001,627(8):1731-1740
Novel xerogels X1 a–d were obtained by sol‐gel processing of the monomeric T‐functionalized diphosphine ligand (MeO)3Si(CH2)6CH[CH2PPh2]2 [1(T0)] with various amounts of the co‐condensing agents MeSi(OMe)2(CH2)6(OMe)2SiMe (D0–C6–D0) and MeSi(OMe)2(CH2)3(C6H4)(CH2)3(OMe)2SiMe [Ph(1,4‐C3D0)2] . 29Si CP/MAS NMR spectroscopic investigations were applied to probe the matrices and their degree of condensation. The integrity of the hydrocarbon backbone and diphosphine moiety was examined by means of solid state NMR spectroscopy (13C, 31P). To study the dynamics of the matrices and the phosphorus centers detailed measurements of relaxation time (T1ρH) and cross polarization constants (TSiH, TPH) were carried out. The accessibility of the polysiloxane‐supported diphosphines was scrutinized by some typical phosphine reactions. It was found that reagents such as H2O2, MeI as well as bulky molecules like (NBD)Mo(CO)4 or (COD)PdCl2 are able to reach all phosphorus centers independent on the kind of the backbone of the matrix. SEM micrographs show the morphology of the hybrid materials and energy dispersive X‐ray spectroscopy (EDX) suggest that the distribution of the elements agree with the applied composition. 相似文献