首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of Z-scheme TiO2/g-C3N4/RGO ternary heterojunction photocatalysts are successfully constructed via a direct electrospinning technique coupled with an annealing process for the first time. They are investigated comprehensively in terms of crystal structure, morphology, composition, specific surface area, photoelectrochemical properties, photodegradation performance, etc. Compared with binary TiO2/g-C3N4 and single-component photocatalysts, ternary heterojunction photocatalysts show the best photodegradation performance for RhB under stimulated sunlight. This can be attributed to the enlarged specific surface area (111.41 m2/g), the formation of Z-scheme heterojunction, and the high separation migration efficiency of photoexcited charge carriers. A potential Z-scheme mechanism for ternary heterojunction photocatalysts is proposed to elucidate the remarkably ameliorated photocatalytic performance based on active species trapping experiments, PL detection test of hydroxyl radicals, and photoelectrochemical properties.  相似文献   

2.
Heterojunction BiOI/SnO2 nanocomposites have been facilely synthesized by using successive ionic layer adsorption and reaction (SILAR) and a hydrothermal method, and polyethylene terephthalate (PET) nanofibers (NFs) were utilized as a photocatalyst carrier to support the BiOI/SnO2 nanocomposites. PET/BiOI/SnO2 NFs displayed excellent photocatalytic ability towards methyl orange (MO) and tetracycline (TC) under visible light irradiation. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were employed to investigate the morphology, crystal structure and chemical state of the PET/BiOI/SnO2 nanofibers. Photoluminescence (PL) and active species trapping experiments indicated that photoinduced charge separation promoted the formation of holes (h+) and superoxide radicals (•O2-). Moreover, a photodegradation mechanism was proposed to illustrate that the formation of a Fermi level equilibrium state between semiconductors accelerated charge separation in the semiconductor. This study is meaningful for providing new inspiration to design and fabricate novel heterostructure photocatalysts with enhanced photocatalytic activity.  相似文献   

3.
As one of the most appealing and attractive technologies, photocatalysis is widely used as a promising method to circumvent the environmental and energy problems. Due to its chemical stability and unique physicochemical, graphitic carbon nitride (g-C3N4) has become research hotspots in the community. However, g-C3N4 photocatalyst still suffers from many problems, resulting in unsatisfactory photocatalytic activity such as low specific surface area, high charge recombination and insufficient visible light utilization. Since 2009, g-C3N4-based heterostructures have attracted the attention of scientists worldwide for their greatly enhanced photocatalytic performance. Overall, this review summarizes the recent advances of g-C3N4-based nanocomposites modified with transition metal sulfide (TMS), including (1) preparation of pristine g-C3N4, (2) modification strategies of g-C3N4, (3) design principles of TMS-modified g-C3N4 heterostructured photocatalysts, and (4) applications in energy conversion. What is more, the characteristics and transfer mechanisms of each classification of the metal sulfide heterojunction system will be critically reviewed, spanning from the following categories: (1) Type I heterojunction, (2) Type II heterojunction, (3) p-n heterojunction, (4) Schottky junction and (5) Z-scheme heterojunction. Apart from that, the application of g-C3N4-based heterostructured photocatalysts in H2 evolution, CO2 reduction, N2 fixation and pollutant degradation will also be systematically presented. Last but not least, this review will conclude with invigorating perspectives, limitations and prospects for further advancing g-C3N4-based heterostructured photocatalysts toward practical benefits for a sustainable future.  相似文献   

4.
Forming eco-friendly heterojunction photocatalysts is excellent method to accelerate the separation rate of photogenerated charge carriers, which is attracting more and more attention. In this study, a novel and stable disordered porous g-C3N4/SiO2/SnO2 (DOP-CSiSn) heterojunction composites was fabricated by a sol-gel hard template method, and the optimal g-C3N4 doped ratio was adjusted in DOP-CSiSn. The DOP-CSiSn photocatalyst had the much larger specific surface area and disordered porous structure, which exhibited strong photocatalytic effect to degrade Rhodamine B (RhB), Methylene blue (MB) and Methyl orange (MO) under visible light. When the g-C3N4 doping content was 30 wt%, the highest photocatalytic activities were obtained, and the degradation rate of MB and MO were 99.73% and 95.58% after 50 min, respectively. Degradation rate of RhB was 95.10% after 90 min. Photocatalytic degradation rate of organic pollutants were still more than 90% after six time consecutive cycles, the composite had wonderful stability and potential value in environmental purification.  相似文献   

5.
A visible light active p-n heterojunction photocatalyst was synthesized successfully through in-situ chemical oxidation copolymerization of aniline (ANI) and diphenylamine-4-sulfonate (DPAS) with the existence of coordination polymer nanorod (CPNR) under initiation of ammonium persulfate (APS). Compared with neat coordination polymer nanorod, the resulted p-n heterojunction photocatalyst exhibits higher H2 generationrate under visible light irradiation. In this heterojunction photocatalyst, as a p-type semiconductor possessing suitable energy levels with coordination polymer nanorod, poly-(aniline-co-N-(4-sulfophenyl)-aniline) (PAPSA) forms p-n heterojunction with n-type coordination polymer nanorod, the inner electric field of p-n heterojunction accelerates the separation of electrons and holes, which enhances H2 production performance. Furthermore, the influence of concentration ratio between DPAS and ANI on photocatalytic property of the p-n heterojunction photocatalyst was discussed and a reasonable condition to fabricate photocatalyst with high H2 generationrate had been obtained. During photocatalytic water splitting H2 generation, the p-n heterojunction photocatalyst exhibited outstanding stability.  相似文献   

6.
以钼酸铵和C3N4为前驱体,利用浸渍法成功制备了高性能MoO3-C3N4复合光催化剂,利用X射线衍射(XRD)、傅里叶红外(FT-IR)、高分辨电镜(HRTEM)及N2吸附-脱附曲线等测试手段对所得MoO3-C3N4光催化剂进行了结构和形貌表征。以可见光下光催化降解甲基橙反应表征MoO3-C3N4的光催化活性。实验结果表明,MoO3-C3N4光催化剂具有非常好的光催化降解性能,且MoO3含量对反应活性产生显著影响。当MoO3含量为1.6%(w/w)时光催化活性最好,其速率常数达到C3N4的50倍。通过研究发现该复合催化剂的高活性来自于其Z型光生载流子传输过程,抑制了光生电子空穴对的复合并延长了引入MoO3产生的载流子的寿命。  相似文献   

7.
TiO2/Mo-TiO2 的制备、表征和光催化活性   总被引:1,自引:0,他引:1  
刘兴平  蒋荣英  柳松 《催化学报》2010,31(11):1381-1387
 采用溶胶-凝胶法制备了掺 Mo 的 TiO2 粉末, 再由其制得 TiO2/Mo-TiO2 复合物光催化剂. 使用 X 射线光电子能谱、X 射线衍射、透射电镜、N2 吸附-脱附、紫外-可见漫反射光谱和荧光光谱等手段对催化剂进行了表征. 在紫外光照射下, 以甲基橙溶液降解为探针反应, 研究了 Mo 掺杂量对样品光催化活性的影响. 结果表明, Mo-TiO2 催化剂的活性不如纯 TiO2, 这是因为 Mo 离子促进了光生载流子的复合; 而带有 n-n 异质结半导体结构的 TiO2/Mo-TiO2 复合催化剂具有比纯 TiO2 和 Mo-TiO2 催化剂更高的光催化活性. 当 Mo 掺杂摩尔分数为 2%, TiO2:Mo-TiO2 质量比为 10:1 时, 活性是纯 TiO2 的 1.57 倍.  相似文献   

8.
《中国化学快报》2021,32(8):2474-2478
Fabrication of well-designed heterojunctions is an extraordinarily attractive pathway for boosting the photocatalytic activity toward CO_2 photoreduction.Herein,a novel kind of na nosheet-based intercalation hybrid coupled with CdSe quantum dots(QDs) was successfully fabricated by a facile solvothermal method and served as photocatalyst for full-spectrum-light-driven CO_2 reduction.Ultra-small CdSe QDs were rationally in-situ introduced and coupled with lamellar ZnSe-intercalation hybrid nanosheet,resulting in the formation of CdSe Q.Ds/ZnSe hybrid heterojunction.Significantly,the concentration of Cd~(2+) could change directly the crystallinity and micromorphology of ZnSe intercalation hybrid,which in turn would impact on the photocatalysis activity.The optimized CdSe QDs/ZnSe hybrid-5 composite demonstrated a considerable CO yield rate of the 25.6 μmol g~(-1) h~(-1) without any additional cocatalysts or sacrificial agents assisting,making it one of the best reported performance toward CO_2 photoreduction under full-spectrum light.The elevated CO_2 photoreduction activity could be attributed to the special surface heterojunction,leading to improving the ability of light absorption and promoting the separation/transfer of photogenerated carriers.This present study developed a new strategy for designing inorganic-organic heterojunctions with enhanced photocatalyst for CO_2 photoreduction and provided an available way to simultaneously mitigate the greenhouse effect and alleviate energy shortage pressure.  相似文献   

9.
The production of CH3OH from the photocatalytic CO2 reduction reaction (PCRR) presents a promising route for the clean utilization of renewable resources, but charge recombination, an unsatisfying stability and a poor selectivity limit its practical application. In this paper, we present the design and fabrication of 0D/2D materials with polymeric C3N4 nanosheets and CdSe quantum dots (QDs) to enhance the separation and reduce the diffusion length of charge carriers. The rapid outflow of carriers also restrains self‐corrosion and consequently enhances the stability. Furthermore, based on quantum confinement effects of the QDs, the energy of the electrons could be adjusted to a level that inhibits the hydrogen evolution reaction (HER, the main competitive reaction to PCRR) and improves the selectivity and activity for CH3OH production from the PCRR. The band structures of photocatalysts with various CdSe particle sizes were also investigated quantitatively to establish the relationship between the band energy and the photocatalytic performance.  相似文献   

10.
Effectively reducing the concentration of nitrogen-containing compounds (NCCs) remains a significant but challenging task in environmental restoration. In this work, a novel step-scheme (S-scheme) SnO2@MCr heterojunction was successfully fabricated via a facile hydrothermal method. At this heterojunction, MIL-101(Cr) octahedrons are decorated with highly dispersed SnO2 quantum dots (QDs, approximate size 3 nm). The QDs are evenly wrapped around the MIL-101(Cr), forming an intriguing zero-dimensional/three-dimensional (0D/3D) S-scheme heterostructure. Under simulated sunlight irradiation (280 nm < λ < 980 nm), SnO2@MCr demonstrated superior photoactivity toward the denitrification of pyridine, a typical NCC. The adsorption capacity and adsorption site of SnO2@MCr were also investigated. Tests using 20%SnO2@MCr exhibited much higher activity than that of pure SnO2 and MIL-101(Cr); the reduction ratio of Cr(VI) is rapidly increased to 95% after sunlight irradiation for 4 h. The improvement in the photocatalytic activity is attributed to (i) the high dispersion of SnO2 QDs, (ii) the binding of the rich adsorption sites with pyridine molecules, and (iii) the formation of the S-scheme heterojunction between SnO2 and MIL-101(Cr). Finally, the photocatalytic mechanism of pyridine was elucidated, and the possible intermediate products and degradation pathways were discussed.  相似文献   

11.
Ag nanoparticles (NPs) were deposited on the surface of g-C3N4 (CN) by an in situ calcination method. NiS was successfully loaded onto the composites by a hydrothermal method. The results showed that the 10 wt%-NiS/1.0 wt%-Ag/CN composite exhibits excellent photocatalytic H2 generation performance under solar-light irradiation. An H2 production rate of 9.728 mmol·g?1·h?1 was achieved, which is 10.82-, 3.45-, and 2.77-times higher than those of pure g-C3N4, 10 wt%-NiS/CN, and 1.0 wt%-Ag/CN composites, respectively. This enhanced photocatalytic H2 generation can be ascribed to the co-decoration of Ag and NiS on the surface of g-C3N4, which efficiently improves light harvesting capacity, photogenerated charge carrier separation, and photocatalytic H2 production kinetics. Thus, this study demonstrates an effective strategy for constructing excellent g-C3N4-related composite photocatalysts for H2 production by using different co-catalysts.  相似文献   

12.
《中国化学快报》2023,34(6):107903
Quantum dots (QDs) based heterojunction is a candidate for the photocatalytic CO2 reduction, owing to the large extinction coefficient and easy modification of band structures. However, the van der Waals interaction causes the large charge resistance and strong recombination centers between QDs and host materials, which makes the poor photocatalytic performance. Herein, a covalent bonded CdSeTe QDs and NH2-UiO-66 heterojunction (NUC-x) is constructed through an acylamino (-CONH-). The results indicate that the acylamino between NH2-UiO-66 and CdSeTe QDs can serve as the transfer channels for the photogenerated charges and stabilize the QDs. The optimized NUC-1200 achieved a CO generation rate of 228.68 µmol/g, which is 13 and 4 times higher than that of NH2-UiO-66 and CdSeTe QDs, respectively. This work provides a new avenue for efficient and stable photocatalysis of QDs.  相似文献   

13.
Owing to the exorbitant overpotential and serious carrier recombination of graphitic carbon nitride (gC3N4),noble metal (NM) is usually served as the H2evolution co-catalyst.Although the NM (such as Pt)nanoparticles can reduce the H2evolution overpotential,the weak van der Waals interaction between Pt and g-C3N4makes against the charge transfer.Herein,the solvothermal method is developed to achieve semi-chemical interaction betwee...  相似文献   

14.
Visible light active Ag doped SnO2 nanoparticles modified with curcumin (Cur–Ag–SnO2) have been prepared by a combined precipitation and chemical impregnation route. The optical properties, phase structures and morphologies of the as-prepared nanoparticles were characterized using UV–visible diffuse reflectance spectra (UV–vis-DRS), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The surface area was measured by Brunauer. Emmett. Teller (B.E.T) analysis. Compared to bare SnO2, the surface modified photocatalysts (Ag–SnO2 and Cur–Ag–SnO2) showed a red shift in the visible region. The photocatalytic activity was monitored via the degradation of rose bengal (RB) dye and the results revealed that Cur–Ag–SnO2 shows better photocatalytic activity than that of Ag–SnO2 and SnO2. The superior photocatalytic activity of Cur–Ag–SnO2 could be attributed to the effective electron-hole separation by surface modification. The effect of photocatalyst concentration, initial dye concentration and electron scavenger on the photocatalytic activity was examined in detail. Furthermore, the antifungal activity of the photocatalysts and the reusability of Cur–Ag–SnO2 were tested.  相似文献   

15.
Efficient separation of photogenerated electron–hole pairs is a crucial factor for high-performance photocatalysts. Effective electron–hole separation and migration could be achieved by heterojunctions with suitable band structures. Herein, a porous SrTiO3/SrSO4 heterojunction is prepared by a sol-gel method at room temperature followed by an annealing process. XRD characterization suggests high crystallinity of the heterostructure. A well-defined interface between the two phases is confirmed by high-resolution (HR)TEM. The photocatalytic H2 evolution productivity of the SrTiO3/SrSO4 heterojunction with Pt as co-catalyst reaches 396.82 μmol g−1 h−1, which is 16 times higher than that of SrTiO3/Pt. The boosted photocatalytic activity of SrTiO3/SrSO4/Pt can be ascribed to the presence of SrSO4, which promotes the transfer and migration of photogenerated carriers by forming the heterojunction and porous structure, which provides a large amount of active sites. This novel porous heterostructure brings new ideas for the development of high-efficiency photocatalysts for H2 release.  相似文献   

16.
Cooperative coupling of H2 evolution with oxidative organic synthesis is promising in avoiding the use of sacrificial agents and producing hydrogen energy with value-added chemicals simultaneously. Nonetheless, the photocatalytic activity is obstructed by sluggish electron-hole separation and limited redox potentials. Herein, Ni-doped Zn0.2Cd0.8S quantum dots are chosen after screening by DFT simulation to couple with TiO2 microspheres, forming a step-scheme heterojunction. The Ni-doped configuration tunes the highly active S site for augmented H2 evolution, and the interfacial Ni−O bonds provide fast channels at the atomic level to lower the energy barrier for charge transfer. Also, DFT calculations reveal an enhanced built-in electric field in the heterojunction for superior charge migration and separation. Kinetic analysis by femtosecond transient absorption spectra demonstrates that expedited charge migration with electrons first transfer to Ni2+ and then to S sites. Therefore, the designed catalyst delivers drastically elevated H2 yield (4.55 mmol g−1 h−1) and N-benzylidenebenzylamine production rate (3.35 mmol g−1 h−1). This work provides atomic-scale insights into the coordinated modulation of active sites and built-in electric fields in step-scheme heterojunction for ameliorative photocatalytic performance.  相似文献   

17.
Advanced oxidation processes (AOPs) counting heterogeneous photocatalysis has confirmed as one of the preeminent method for waste water remediation. In the present work, we have successfully fabricated novel visible-light-driven nitrogen-doped graphene (NG) supported magnetic ZnO/ZnFe2O4 (ZnO/ZF/NG) and ZnO/CoFe2O4 (ZnO/CF/NG) nanocomposites. ZnO synthesized via direct precipitation method. Hydrothermal method was used for the preparation of nitrogen-doped graphene supported magnetic ZnO/ZF (ZnO/ZnFe2O4) and ZnO/CF (ZnO/CoFe2O4) nanocomposites. The procured materials were scrutinized by assorted characterizations to acquire information on their chemical composition, crystalline structure and photosensitive properties. The absorption and photocatalytic performance of photocatalysts were studied via UV–Visible spectra. Photodegradation performance of the synthesized nanocomposites was estimated toward mineralization of methyl orange (MO) and malachite green (MG) dyes in aqueous solution. The high surface area of ZnO/ZF/NG and ZnO/CF/NG was suitable for adsorptive removal of MO and MG dyes. The photodegradation performance of heterojunction photocatalysts was superior to bare photocatalyst in 140 min under visible-light irradiation. Spectrophotometer, GC–MS (Gas chromatography–mass spectrometry) elucidation was carried out to expose the possible intermediates formed. Both ZnO/ZF/NG and ZnO/CF/NG were rapidly isolated from the aqueous phase by applying an external magnetic field in 20 sec and 2 min, respectively. The photocatalytic performance and stability of ZnO/ZF/NG and ZnO/CF/NG nanocomposites were confirmed by conducting 10 consecutive regeneration cycles. Owing to recyclability of ZnO/ZF/NG and ZnO/CF/NG, these heterogeneous nanocomposites might be used as cost-effective for treatment of discarded water. The observations endorse that the synthesized ternary heterogeneous nanocomposites facilitates wastewater decontamination using photocatalytic technology.  相似文献   

18.
The photocatalytic activity of graphite‐like carbon nitride (g‐C3N4) could be enhanced by heterojunction strategies through increasing the charge‐separation efficiency. As a surface‐based process, the heterogeneous photocatalytic process would become more efficient if a larger contact region existed in the heterojunction interface. In this work, ultrathin g‐C3N4 nanosheets (g‐C3N4‐NS) with much larger specific surface areas are employed instead of bulk g‐C3N4 (g‐C3N4‐B) to prepare AgIO3/g‐C3N4‐NS nanocomposite photocatalysts. By taking advantage of this feature, the as‐prepared composites exhibit remarkable performances for photocatalytic wastewater treatment under visible‐light irradiation. Notably, the optimum photocatalytic activity of AgIO3/g‐C3N4‐NS composites is almost 80.59 and 55.09 times higher than that of pure g‐C3N4‐B towards the degradation of rhodamine B and methyl orange pollutants, respectively. Finally, the stability and possible photocatalytic mechanism of the AgIO3/g‐C3N4‐NS system are also investigated.  相似文献   

19.
基于微波水热法和微乳液法合成SnO2/TiO2纳米管复合光催化剂. 通过X射线衍射(XRD)、配有能量色散X射线光谱仪(EDX)的透射电镜(TEM)和电化学手段对光催化剂进行表征. 以甲苯为模型污染物,考察光催化剂在紫外光(UV)和真空远紫外光(VUV)下的性能及失活再生. 结果表明,SnO2/TiO2纳米管复合光催化剂形成三元异质结(锐钛矿相TiO2(A-TiO2)/金红石相TiO2(R-TiO2)、A-TiO2/SnO2和R-TiO2/SnO2异质结),促使光生电子-空穴对的有效分离,提高光催化活性. SnO2/TiO2表现出最佳的光催化性能,UV和VUV条件下的甲苯降解率均达100%,CO2生成速率(k2)均为P25的3倍左右. 但由于UV光照矿化能力不足,中间产物易在催化剂表面累积. 随着UV光照时间的增加,SnO2/TiO2逐渐失活,20 h 后k2由138.5 mg·m-3·h-1下降到76.1 mg·m-3·h-1. 利用VUV再生失活的SnO2/TiO2,过程中产生的·OH、O2、O(1D)、O(3P)、O3等活性物质可氧化吸附于催化剂活性位的难降解中间产物,使催化剂得以再生,12 h后k2恢复到143.6 mg·m-3·h-1. UV和VUV的协同效应使UV降解耦合VUV再生成为一种可持续的光催化降解污染物模式.  相似文献   

20.
Halide perovskite quantum dots (QDs) have great potential in photocatalytic applications if their low charge transportation efficiency and chemical instability can be overcome. To circumvent these obstacles, we anchored CsPbBr3 QDs (CPB) on NHx‐rich porous g‐C3N4 nanosheets (PCN) to construct the composite photocatalysts via N?Br chemical bonding. The 20 CPB‐PCN (20 wt % of QDs) photocatalyst exhibits good stability and an outstanding yield of 149 μmol h?1 g?1 in acetonitrile/water for photocatalytic reduction of CO2 to CO under visible light irradiation, which is around 15 times higher than that of CsPbBr3 QDs. This study opens up new possibilities of using halide perovskite QDs for photocatalytic application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号