首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of 1,1,1,3,3,3-hexafluoropropan-2-ol (HFP) on the properties of phenoxyl radicals has been investigated. HFP produces large variations of the phenoxyl hyperfine splitting constants indicative of a large redistribution of electron spin density, which can be accounted for by the increased importance of the mesomeric structures with electric charge separation. The conformational rigidity of phenoxyl radicals with electron-releasing substituents is also greatly enhanced in the presence of HFP, as demonstrated by the 2 kcal/mol increase in the activation energy for the internal rotation of the p-OMe group in the p-methoxyphenoxyl radical. By using the EPR equilibration technique, we have found that in phenols the O-H bond dissociation enthalpy (BDE) is lowered in the presence of HFP because it preferentially stabilizes the phenoxyl radical. In phenols containing groups such as OR that are acceptors of H-bonds, the interaction between HFP and the substituent is stronger in the phenol than in the corresponding phenoxyl radical because the radical oxygen behaves as an electron-withdrawing group, which decreases the complexating ability of the substituent. In phenols containing OH or NH(2) groups, EPR experiments performed in H-bond accepting solvents showed that the interaction between the solvent and the substituent is much stronger in the phenoxyl radical than in the parent phenol because of the electron-withdrawing effect of the radical oxygen, which makes more acidic, and therefore more available to give H-bonds, the OH or NH(2) groups. These experimental results have been confirmed by DFT calculations. The effect of HFP solvent on the reactivity of phenols toward alkyl radicals has also been investigated. The results indicated that the decrease of BDE observed in the presence of HFP is not accompanied by a larger reactivity. The origin of this unexpected behavior has been shown by DFT computations. Finally, a remarkable increase in the persistency of the alpha-tocopheroxyl radical has been observed in the presence of HFP.  相似文献   

2.
Quinones and quinols are secondary metabolites of higher plants that are associated with many biological activities. The oxidative dearomatization of phenols induced by hypervalent iodine(III) reagents has proven to be a very useful synthetic approach for the preparation of these compounds, which are also widely used in organic synthesis and medicinal chemistry. Starting from several substituted phenols and naphthols, a series of cyclohexadienone and naphthoquinone derivatives were synthesized using different hypervalent iodine(III) reagents and evaluated for their in vitro antiprotozoal activity. Antiprotozoal activity was assessed against Plasmodium falciparum NF54 and Trypanosoma brucei rhodesiense STIB900. Cytotoxicity of all compounds towards L6 cells was evaluated and the respective selectivity indices (SI) were calculated. We found that benzyl naphthoquinone 5c was the most active and selective molecule against T. brucei rhodesiense (IC50 = 0.08 μM, SI = 275). Furthermore, the antiprotozoal assays revealed no specific effects. In addition, some key physicochemical parameters of the synthesised compounds were calculated.  相似文献   

3.
Kinetics and mechanism of the reaction of vegetable phenols (PhOH) with 2,2′-diphenyl-1-picrylhydrazyl radical (DPPH?) in a polar aprotic solvent, dimethyl sulfoxide, were studied. The reaction of natural phenols with DPPH? in dimethyl sulfoxide occurs in two stages. In the first stage, a proton-coupled electron transfer (PCET) occurs from a PhOH molecule to DPPH? to give primary transformation products, phenoxyl radicals (PhO?) and diphenyl hydrazine (DPPH–H), and in the second, the hydrazyl radical is consumed in the reaction with PhO? transformation products, enolized dimers, which is confirmed by NMR spectroscopy. A relationship was revealed between the antiradical activity of phenols in the reaction with DPPH? (ln k) and the ionization potential of the phenolates being formed.  相似文献   

4.
Outer-sphere oxidation of phenols is under intense scrutiny because of questions related to the dynamics of proton-coupled electron transfer (PCET). Oxidation by cationic transition-metal complexes in aqueous solution presents special challenges because of the potential participation of the solvent as a proton acceptor and of the buffers as general base catalysts. Here we report that oxidation of phenol by a deficiency of [Os(phen)(3)](3+), as determined by stopped-flow spectrophotometry, yields a unique rate law that is second order in [osmium(III)] and [phenol] and inverse second order in [osmium(II)] and [H(+)]. A mechanism is inferred in which the phenoxyl radical is produced through a rapid PCET preequilibrium, followed by rate-limiting phenoxyl radical coupling. Marcus theory predicts that the rate of electron transfer from phenoxide to osmium(III) is fast enough to account for the rapid PCET preequilibrium, but it does not rule out the intervention of other pathways such as concerted proton-electron transfer or general base catalysis.  相似文献   

5.
The mechanism of stable radical generation in lignin under the action of nitrogen dioxide and NO2 - air mixture is considered. The formation of phenoxyl, iminoxyl and acylaminoxyl radicals has been detected by EPR. The proposed mechanism involves a primary oxidative reaction of phenol groups with dimers of NO2 (nitrosyl nitrate) resulting in the formation of phenoxyl radicals and nitric oxide. In the subsequent recombination of phenoxyl radicals and nitric oxide, nitroso compounds and oximes are formed. By reaction of oximes with radicals NO2, stable iminoxyl radicals are formed. This mechanism is confirmed by kinetic dependencies obtained over a wide range of NO2 concentrations. From IR spectroscopy measurements it follows that hydroxyl groups of non-phenolic structures of lignin are oxidised to aldehydes producing acylaminoxyl radicals by reaction with NO2. The kinetic data show that the adsorption of NO2 on the lignin surface is the rate-determining factor in stable radical formation.  相似文献   

6.
A transition-metal-free synthesis of spiro compounds from 9H-fluoren-9-ols mediated by hypervalent iodine is reported. In this reaction, an unprecedented β-carbon elimination of tertiary alkoxyliodine(III) to form new diaryliodonium salts is proposed. The obtained phenol intermediates undergo oxidative dearomatization to furnish a class of oxo-spiro compounds. This domino reaction significantly increases the complexity of these molecules and shows excellent regio- and stereoselectivity.  相似文献   

7.
A transition‐metal‐free synthesis of spiro compounds from 9H‐fluoren‐9‐ols mediated by hypervalent iodine is reported. In this reaction, an unprecedented β‐carbon elimination of tertiary alkoxyliodine(III) to form new diaryliodonium salts is proposed. The obtained phenol intermediates undergo oxidative dearomatization to furnish a class of oxo‐spiro compounds. This domino reaction significantly increases the complexity of these molecules and shows excellent regio‐ and stereoselectivity.  相似文献   

8.
The effect of water on the O-H bond dissociation enthalpy (BDE) of para-substituted phenols has been investigated by means of DFT calculations. It is shown that the experimental BDE values are fairly well-reproduced by simple B3LYP/6-31G* calculations carried out on the phenol/phenoxyl-water complexes taking into account only hydrogen-bonding (HB) interactions of water molecules with molecular sites (HB model). On the contrary, the BDE values computed with the polarizable continuum model (PCM/B3LYP/6-31G*)8 are overestimated by about 3-4 kcal/mol. Discrepancy between theory and experiment increases using the PCM method in addition to the HB model. Calculations show that, in general, the HB interaction with water molecules decreases the BDE of phenols bearing electron-releasing groups while increasing the BDE of phenols bearing electron-withdrawing substituents. This opposite effect is explained by considering the resonance structures with charge separation both in phenols and in phenoxyl radicals. With electron donors, the phenoxyl radical is preferentially stabilized by the HB acceptor interaction with two water molecules, while with electron acceptors the phenol is preferentially stabilized by the HB donor interaction with one water molecule.  相似文献   

9.
Fullerene derivatives incorporating one or two 3,5-di-tert-butyl-4-hydroxyphenyl groups were synthesized by 1,3-dipolar cycloaddition of azomethine ylides to C(60). The O-H bond dissociation enthalpies (BDEs) of these compounds were estimated by studying, by means of EPR spectroscopy, the equilibration of each of these phenols and 2,6-di-tert-butyl-4-methylphenol (BHT) with the corresponding phenoxyl radicals. The antioxidant activity of the investigated phenols was also determined by measuring the rate constants for their reaction with peroxyl radicals in controlled autoxidation experiments and compared to that recorded under identical experimental settings for [60]fullerene itself and unlinked BHT. The results indicate that linking of the BHT structure to C(60) does not substantially alter the thermochemistry and kinetics of its reaction with peroxyl radicals, but such adducts may behave as interesting bimodal radical scavengers. The inherent rate constant for trapping of peroxyl radicals by C(60) per se (k(inh)=3.1+/-1.1 x 10(2) m(-1) s(-1)) indicates that, contrary to previous reports, [60]fullerene is an extremely weak chain-breaking antioxidant.  相似文献   

10.
The mechanism of the radiation-thermal conversion of lignin including the formation of aromatic radical cations and their fragmentation resulting in the appearance of phenoxyl radicals is considered. The multipath formation of phenoxyl radicals occurs with the participation of the reactions of molecules with electrons and small radicals (?Н and ?СН3) and electronic excitation relaxation processes. Phenoxyl radicals are characterized by smaller thermal stability in comparison with that of parent macromolecules. The further thermally stimulated decomposition of these radicals results in the release of monohydric and dihydric phenols from a polymeric chain. The most effective liberation of phenols takes place on the surface of lignin particles, whereas the formation of wood charcoal with the participation of unsaturated products dominates in the bulk. The formation of dihydric phenols is intensified in the presence of alkanes in the irradiated sample; this fact is indicative of an important role of ?Н and ?СН3 radicals in the formation of monomeric phenol products.  相似文献   

11.
Ligand radicals from salen complexes are unique mixed-valence compounds in which a phenoxyl radical is electronically linked to a remote phenolate via a neighboring redox-active metal ion, providing an opportunity to study electron transfer from a phenolate to a phenoxyl radical mediated by a redox-active metal ion as a bridge. We herein synthesize one-electron-oxidized products from electronically diverse manganese(III) salen complexes in which the locus of oxidation is shown to be ligand-centered, not metal-centered, affording manganese(III)-phenoxyl radical species. The key point in the present study is an unambiguous assignment of intervalence charge transfer bands by using nonsymmetrical salen complexes, which enables us to obtain otherwise inaccessible insight into the mixed-valence property. A d(4) high-spin manganese(III) ion forms a Robin-Day class II mixed-valence system, in which electron transfer is occurring between the localized phenoxyl radical and the phenolate. This is in clear contrast to a d(8) low-spin nickel(II) ion with the same salen ligand, which induces a delocalized radical (Robin-Day class III) over the two phenolate rings, as previously reported by others. The present findings point to a fascinating possibility that electron transfer could be drastically modulated by exchanging the metal ion that bridges the two redox centers.  相似文献   

12.
Depolymerization of an engineering plastic, poly(2,6-dimethyl-1,4-phenylene oxide) (PPO), was accomplished by using 2,6-dimethylphenol (DMP) under oxidative conditions. The addition of an excess amount of DMP to a solution of PPO in the presence of a CuCl/pyridine catalyst yielded oligomeric products. When PPO (M(n)=1.0x10(4), M(w)/M(n)=1.2) was allowed to react with a sufficient amount of DMP, the molecular weight of the product decreased to M(n)=4.9x10(2) (M(w)/M(n)=1.5). By a prolonged reaction with the oxidant, the oligomeric product was repolymerized to produce PPO essentially identical to the starting material, making the oligomer useful as a reusable resource. During the depolymerization reaction, an intermediate phenoxyl radical was observed by ESR spectroscopy. Kinetic analysis showed that the rate of the oxidation of PPO was about 10 times higher than that of DMP. These results show that a monomeric phenoxyl radical attacks the polymeric phenoxyl to induce the redistribution via a quinone ketal intermediate, leading to the substantial decrease in the molecular weight of PPO, which is much faster than the chain growth.  相似文献   

13.
Hydrogen atom transfer (HAT) reactions of (tpfc)MnNTs have been investigated (tpfc = 5,10,15-tris(pentafluorophenyl)corrole and Ts = p-toluenesulfonate). 9,10-Dihydroanthracene and 1,4-dihydrobenzene reduce (tpfc)MnNTs via HAT with second-order rate constants 0.16 +/- 0.03 and 0.17 +/- 0.01 M(-1) s(-1), respectively, at 22 degrees C. The products are the respective arenes, TsNH(2) and (tpfc)Mn(III). Conversion of (tpfc)MnNTs to (tpfc)Mn by reaction with dihydroanthracene exhibits isosbestic behavior, and formation of 9,9',10,10'-tetrahydrobianthracene is not observed, suggesting that the intermediate anthracene radical rebounds in a second fast step without accumulation of a Mn(IV) intermediate. The imido complex (tpfc)Mn(V)NTs abstracts a hydrogen atom from phenols as well. For example, 2,6-di-tert-butyl phenol is oxidized to the corresponding phenoxyl radical with a second-order rate constant of 0.32 +/- 0.02 M(-1) s(-1) at 22 degrees C. The other products from imido manganese(V) are TsNH(2) and the trivalent manganese corrole. Unlike reaction with dihydroarenes, when phenols are used isosbestic behavior is not observed, and formation of (tpfc)Mn(IV)(NHTs) is confirmed by EPR spectroscopy. A Hammett plot for various p-substituted 2,6-di-tert-butyl phenols yields a V-shaped dependence on sigma, with electron-donating substituents exhibiting the expected negative rho while electron-withdrawing substituents fall above the linear fit (i.e., positive rho). Similarly, a bond dissociation enthalpy (BDE) correlation places electron-withdrawing substituents above the well-defined negative slope found for the electron-donating substituents. Thus two mechanisms are established for HAT reactions in this system, namely, concerted proton-electron transfer and proton-gated electron transfer in which proton transfer is followed by electron transfer.  相似文献   

14.
Novel optically active hypervalent iodine(V) reagents with planar chiral crown ether backbones were synthesized using the intramolecular Huisgen reaction as a key step and l-methyl lactate as the source of chirality. The relative configurations of these reagents and stabilities of planar chiralities were determined by DFT calculations. These planar chiral reagents were applied to the hydroxylative dearomatization/[4 + 2]-dimerization reactions of phenols to afford bisthymol and biscarvacrol, a natural product, with moderate enantioselectivities.  相似文献   

15.
The mechanism of interaction of nitrogen dioxide with aromatic polyimides is considered by the example of polypyromellitimide. The formation of stable radicals of acylarylaminoxyl, iminoxyl and phenoxyl types has been detected by electron paramagnetic resonance spectroscopy. Acylarylaminoxyl radicals were detected in polypyromellitimide after its exposure to nitrogen dioxide at room temperature followed by pumping nitrogen dioxide from the samples. Iminoxyl and phenoxyl radicals were formed during thermolysis of the nitration products of the polymer at 373 K. The proposed mechanism is based on the reaction of dimers of nitrogen dioxide in the form of nitrosyl nitrate. It was observed that intermediate radical cations and nitric oxide were formed in the primary reaction of electron transfer from the polyimide to nitrosyl nitrate. The subsequent cage reactions with participation of radical cations and nitric oxide give nitroso compounds and nitrates which are precursors of stable nitrogen-containing and phenoxyl radicals.  相似文献   

16.
《Tetrahedron letters》1987,28(49):6109-6112
The oxidative radical cyclization of ω-unsaturated-β-dicarbonylcompounds to 2-substituted phenols and cyclopentanones has been achieved with manganese (III) acetate.  相似文献   

17.
The substituent effect on the g-tensor of polycrystalline 2,6-di-tert-butyl phenoxyl radical derivatives diluted in diamagnetic crystals was investigated using multifrequency ESR spectroscopy and DFT calculations. It was revealed that the g-tensors of the series of phenoxyl radical derivatives essentially have an orthorhombic symmetry. For some radicals, the hyperfine-splitting tensors from the para groups were resolved. The interpretations and the assignments of the spin-Hamiltonian parameters were confirmed with computer simulations in all bands. The DFT-calculated g-tensors were consistent with the experimental g-tensors. Furthermore, the shifts Delta(g) from the free electron ge were analyzed in details as the sum of three contributions. The spin-orbit interactions were found to be the dominant factor with regard to the Delta(g). With a focus on the s-o term, thus, the relationship of the g-values and the electronic excited states was explained by visualizing the molecular orbitals of the phenoxyl radical derivatives. This study thus showed the very significant potential of the combination of a multi-frequency ESR approach and a DFT calculation to advanced ESR analysis, particularly, g-tensor analysis, even for a powder-sample radical.  相似文献   

18.
Proton-coupled electron transfer oxidation of phenols play a prominent role in several natural processes, and one may wonder if their high efficiency is related to the possibility that the electron and proton transfer steps are concerted. The cyclic voltammetric observation of the electrochemical oxidation and reverse reaction has allowed, with the example of 2,4,6-tri-tert-butylphenol in nonbuffered aqueous media, the clear identification of a pathway in which a phenol is directly and reversibly converted into the phenoxyl radical while the generated proton is accepted by a water molecule in a concerted manner. In very basic media, a stepwise mechanism takes place in which the phenol is deprotonated by OH- and the resulting phenoxide ion rapidly oxidized into the phenoxyl radical. As the pH decreases, this pathway progressively shuts down to the advantage of the concerted pathway. The latter assignment is confirmed by the observation of a substantial H/D kinetic isotope effect. At moderately basic pH 10.5, the contributions of the two pathways are about equal and the occurrence of the two competing routes is directly visualized in the cyclic voltammetry response.  相似文献   

19.
The use of and λ3- and λ5-iodanes in the oxidative dearomatization of phenols is a well-established and general procedure for the construction of cyclohexadienone structures. However, their use in asymmetric dearomatization reactions is quite underdeveloped and, despite work by several research groups over the past several years, a general chiral aryl iodide catalyst has yet to emerge. This Letter will serve to highlight the significant progress that has been made in this area and will reveal some of deficiencies in the literature that the author believes may be hindering further progress.  相似文献   

20.
The use of aryloxy oxalyl chlorides (AOCs), aryloxy oxalyl tert-butyl peroxides (AOBs), and diaryl oxalates (DAOs) for unimolecular generation of phenoxyl-based radicals under solution and rigid matrix conditions is described. AOCs are usable for photochemical generation of phenoxyl radicals, but are only conveniently stable as precursors when 2,6-di-tert-butylated derivatives are used. AOBs may be used as thermal precursors to aryloxyl radicals, since they typically decompose within 2-3 h at 60-85 degrees C to give phenols. (1)H-NMR solution kinetic studies find that DeltaH() = 31 kcal/mol, and DeltaS() = +3.4 cal/mol-K for decomposition of phenoxyoxalyl tert-butyl peroxide, consistent with substantial concertedness in peroxide bond cleavage. AOBs and the more stable DAOs are also convenient photochemical phenoxyl radical precursors. AOBs yield phenoxyl radicals more readily by photolysis than do corresponding DAOs, but the DAOs have fewer side reactions that can quench the product phenoxyl radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号