首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We have developed a novel sheath-flow interface for low-flow electrospray ionization mass spectrometry (ESI-MS) and capillary electrophoresis/electrospray mass spectrometry (CE/ESI-MS). The interface is composed of two capillaries. One is a tapered fused-silica ESI emitter suitable for microliter and nanoliter flow rate electrospray and the other is a tail-end gold-coated CE separation column that is inserted into the emitter. A sheath liquid is supplied between the column and the emitter capillaries. The gold coating and the sheath liquid are used as the conducting media for ESI and the CE circuit. This novel design was initially evaluated by an infusion ESI-MS analysis of the most common antiretroviral dideoxynucleosides, followed by CE/MS coupling analysis of several antidepressant drugs. With infusion studies, the effects of the sheath liquid and the sample flow rates on detection sensitivity and signal stability were investigated. For an emitter with an internal diameter of 30 microm, the optimum flow rates for the sheath and the sample were 200 and 300 nL/min, respectively. The main improvement of this approach in comparison with conventional sheath liquid approaches using an ionspray interface is the gain in sensitivity. Sensitivities were three times better for dideoxynucleosides analyzed by infusion and 12 times higher for antidepressant drugs analyzed by CE/MS with this interface compared with ionspray. The emitter is durable, disposable, and simple to fabricate.  相似文献   

2.
A liquid-junction-type interface where a thin spraying capillary is inserted inside the separation capillary was constructed for coupling nonaqueous wide-bore capillary electrophoresis (CE) to mass spectrometry (MS). The robust structure of the interface provided fairly easy capillary handling. The study was carried out with uncoated CE capillaries of 200 and 320 microm inner diameter (ID). 1-Propanol-acetonitrile (80:20 v/v) with acetate electrolyte provided a low conducting medium for CE and good spraying conditions for electrospray ionization (ESI) without sheath-flow and drying gas. Methamphetamine, alprenolol, and levorphanol served as model compounds. Approximate detection limits with the 200 microm ID capillary were 35-265 ng/mL.  相似文献   

3.
Li HF  Liu J  Cai Z  Lin JM 《Electrophoresis》2008,29(9):1889-1894
The present study reports a simple method of coupling a glass microchip to an electrospray ionization (ESI) quadrupole time-of-flight mass spectrometer (QTOF-MS) for separation and identification of peptides. A sheath-flow electrospray interface was constructed based on attaching a short fused-silica capillary to the microchip. The dead volume at the interface was effectively reduced by wet etching an approximate flat-bottom capillary insertion channel coaxial to the end of separation microchannel and using a wire-controlled epoxy-blocking attachment method. The makeup liquid and neb gas were coaxially pumped through two stainless-steel tees to maintain a stable and efficient electrospray. The coupled microchip/ESI-QTOF-MS system was successfully used to carry out electrophoresis separation of peptides and ESI-QTOF-MS identification.  相似文献   

4.
We present rapid (<5 min) and efficient intact protein analysis by mass spectrometry (MS) using fully microfabricated and monolithically integrated capillary electrophoresis–electrospray ionization (CE–ESI) microchips. The microchips are fabricated fully of commercial inorganic–organic hybrid material, Ormocomp, by UV-embossing and adhesive Ormocomp–Ormocomp bonding (CE microchannels). A sheath-flow ESI interface is monolithically integrated with the UV-embossed separation channels by cutting a rectangular emitter tip in the end with a dicing saw. As a result, electrospray was produced from the corner of chip with good reproducibility between parallel tips (stability within 3.8–9.2% RSD). Thanks to its inherent biocompatibility and stable (negative) surface charge, Ormocomp microchips enable efficient intact protein analysis with up to ∼104 theoretical separation plates per meter without any chemical or physical surface modification before analysis. The same microchip setup is also feasible for rapid peptide sequencing and mass fingerprinting and shows excellent migration time repeatability from run to run for both peptides (5.6–5.9% RSD, n = 4) and intact proteins (1.3–7.5% RSD, n = 3). Thus, the Ormocomp microchips provide a versatile new tool for MS-based proteomics. Particularly, the feasibility of the Ormocomp chips for rapid analysis of intact proteins with such a simple setup is a valuable increment to the current technology.  相似文献   

5.
A pneumatically assisted electrospray liquid chromatography/mass spectrometry (LC/MS) interface has been modified for use with packed-column supercritical fluid chromatography (pcSFC). The modifications include the addition of a concentric sheath-flow liquid to the spray device. This allowed the addition of modifiers at the sprayer tip that promote ionization of neutral, pcSFC-separated components. Post-column chromatographic fidelity was preserved using a novel pressure-regulation scheme. Post-column pressure regulation was accomplished by adding a “pressure-regulating fluid” (supplied under pressure control) to the effluent just ahead of the sprayer. The modified interface has been used to characterize a variety of mixtures including emollients, modified polysiloxanes, and pharmaceutical agents. The spectra produced by using this pcSFC/MS interface are similar to electrospray LC/MS spectra.  相似文献   

6.
A method for rapid characterization of recombinant and modified proteins with known sequences is described. The analytical system consists of a capillary zone electrophoresis (CZE) instrument coupled to an electrospray ionization ion trap tandem mass spectrometer via a sheath-flow interface. Following the procedure consists of proteolytic fragmentation, CZE peptide separation, tandem mass spectrometry (MS-MS) analysis of separated peptides, sequence database search and monitoring of the specific peptides, C 125 S mutated interleukin 2 (S-125-IL2) and bovine beta-casein were characterized as a model of recombinant protein and naturally modified protein, respectively. A tryptic peptide mixture derived from the synthetic salmon calcitonin (s-CT) was also analyzed to test the performance of the system. Although a conventional sheath-flow interface with much higher flow-rate compared to the microspray interface and nanospray interface was used, the proteins were identified at the low picomole level.  相似文献   

7.
This paper details the analysis of the enantiomers of omeprazole, using aqueous CE coupled with MS detection. Following our previously published work: where a non-aqueous CE–UV method was developed for omeprazole and 5-hydroxy-omeprazole; coupling to electro-spray ionization (ESI) MS detection has now been investigated, using a sheath-flow interface for introduction. An aqueous CE method was developed and designed to afford increased compatibility with ESI–MS detection, employing an ammonium acetate buffer system (pH 5.8). Common partial filling methods could not be utilized to avoid the entrance of cyclodextrin into the MS, and therefore a modified method of non-continuous-flow CE–MS was applied, with the CE separation carried out without applied ESI voltage, before reapplying and allowing flow into the MS for data collection. A chiral CE separation of omeprazole and 5-hydroxyomeprazole was achieved, and chiral CE resolution of omeprazole has been demonstrated using MS detection.  相似文献   

8.
When optimizing a capillary electrophoresis/electrospray ionization mass spectrometry (CE/ESI-MS) system, consideration has to be given not only to the separation but also to the electrospray stability. Methods developed for CE/UV analysis of drugs and peptides were considered and modified to be suitable for a CE/MS system with a robust sheathless interface. Different concentrations of the organic modifiers acetonitrile, methanol and 2-propanol were used in the separation buffer. The type and concentrations of these modifiers were also compared with reference to electrospray stability, sensitivity and time of analysis. In addition, different ionic strengths in the buffers were evaluated with reference to electrospray stability. The repeatability was used for the estimation of electrospray stability. The degree to which these parameters influenced the separation and the ESI stability was studied using a nine-peptide standard mixture and the antibiotic drugs bacampicillin and ampicillin as test substances. The analysis time and resolution were used as measures of the efficiency of the separation. A time-of-flight MS analyzer was used since it has the potential advantages of becoming a better fit for integration of CE with MS owing to the speed and sensitivity of this mass analyzer. The detection limit, i.e. 1 microM, for bacampicillin was comparable to what could be achieved with CE/MS on a quadrupole instrument using selected ion monitoring and sheath flow ESI.  相似文献   

9.
Capillary electrophoresis coupled to mass spectrometry via an electrospray interface provides a powerful system for separation and characterization of a high number of biomolecules. The present paper describes a home-made sheathless interface and compares it with a commercial sheath-flow interface, using a separation method based on a peptide hormone mixture of therapeutic interest. In a previous work, we optimized the parameters involved in a sheath-flow interface and obtained good results in sensitivity and reproducibility. The sheathless interface is performed with a graphite-coated electrospray ionisation (ESI) tip attached to the separation capillary. We demonstrate that electrolyte composition is the main parameter affecting signal sensitivity and separation resolution. The effect of the nature and concentration of the organic solvent added to the separation electrolyte is carefully studied. Furthermore, a general comparison of both interfaces is made in terms of separation, reproducibility, and sensitivity obtained under the optimized conditions described. Advantages and disadvantages of both coupling setups have been evaluated.  相似文献   

10.
Concentration sensitivity is a key performance indicator for analytical techniques including for capillary electrophoresis-mass spectrometry (CE–MS) with electrospray ionization (ESI). In this study, a flow-through microvial interface was used to couple CE with MS and improve the ESI stability and detection sensitivity. By infusing a peptide mixture through the interface into an MS detector at a typical flow rate for CE-MS analysis, the spatial region near the interface was mapped for MS signal intensity. When the sprayer tip was within a 6 × 6.5 × 5 mm region in front of the MS inlet, the ESI was stable with no significant loss of signal intensity for ions with m/z 239. Finite element simulations showed that the average electric field strength at the emitter tip did not change significantly with minor changes in emitter tip location. Experiments were conducted with four different mass spectrometer platforms coupled to CE via the flow-through microvial interface. Key performance indicators, that is, limit of detection (LOD) and linearity of calibration curves were measured for nine amino acids and five peptides. Inter- and intraday reproducibility were also tested. The results were shown to be suitable for quantification when internal standards were used.  相似文献   

11.
CE hyphenated to ESI-MS (CE-ESI-MS) is a well-established technique to analyze charged analytes in complex samples. Although various interfaces for CE-MS coupling are commercially available, the development of alternatives which combine sensitivity, simplicity, and robustness remains a topic of research. In this work, a nanoflow sheath liquid CE-MS interface with two movable capillaries inside a glass emitter is described. The setup enables a separation mode and a conditioning mode to guide the separation capillary effluent either into the electrospray or to the waste, respectively. This enables to exclude parts of the analysis from MS detection and unwanted matrix components reaching the mass spectrometer, comparable to divert valves in LC-MS coupling. Also, this function improves the overall robustness of the system by reduction of particles blocking the emitter. Preconditioning with electrospray interfering substances and even the application of coating materials for every analysis is enabled, even while the separation capillary is built into the interface with running electrospray. The functionality is demonstrated by analyses of heavy matrix bioreactor samples. Overall, this innovation offers a more convenient installation of the interface, improved handling with an extended lifetime of the emitter tips and additional functions compared to previous approaches, while keeping the higher sensitivity of nanoflow CE-MS-coupling.  相似文献   

12.
Signal suppression is a common issue when analyzing compounds by liquid chromatography coupled to mass spectrometry (LC/MS/MS). Suppression of signals is caused by co‐eluting matrix compounds and is thought to take place in the interface. This paper reports strong signal suppression effects which were observed when using a single‐stage Orbitrap instrument which was coupled by an electrospray interface to a liquid chromatograph. This type of signal suppression (often the complete loss of certain analyte signal) is observed in addition to signal suppression originating in the electrospray interface. The location of where this phenomenon occurs was shown to be clearly beyond the interface region. It was suspected that not the Orbitrap cell itself, but the C‐trap, which is an integral part within the Orbitrap instrument, was the probable location. Such post‐interface signal suppression was observed – and could be experimentally induced – when multiply charged ions (e.g. electrospray protonated proteins) were co‐eluting with the analytes. High concentrations of proteins, yet not exceeding the maximum ion capacity of the trap, can cause a complete loss of all low m/z masses. This paper describes the practical implication when analyzing heavy matrix samples and discusses strategies to reduce such detrimental effects. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Tomato (Lycopersicon esculentum Mill.) is the second most important fruit crop worldwide. Tomatoes are a key component in the Mediterranean diet, which is strongly associated with a reduced risk of chronic degenerative diseases. In this work, we use a combination of mass spectrometry (MS) techniques with negative ion detection, liquid chromatography/electrospray ionization linear ion trap quadrupole‐Orbitrap‐mass spectrometry (LC/ESI‐LTQ‐Orbitrap‐MS) and liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI‐MS/MS) on a triple quadrupole, for the identification of the constituents of tomato samples. First, we tested for the presence of polyphenolic compounds through generic MS/MS experiments such as neutral loss and precursor ion scans on the triple quadrupole system. Confirmation of the compounds previously identified was accomplished by injection into the high‐resolution system (LTQ‐Orbitrap) using accurate mass measurements in MS, MS2 and MS3 modes. In this way, 38 compounds were identified in tomato samples with very good mass accuracy (<2 mDa), three of them, as far as we know, not previously reported in tomato samples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Desorption electrospray ionization (DESI) is implemented on an Orbitrap mass spectrometer. The ion source is described and applications which utilize the high-resolution capabilities of the Orbitrap are emphasized, including the characterization of peptides and active ingredients in pharmaceutical tablets. Measurements are made in less than 1 s at a resolution of 60,000. The implications of the data for the mechanisms of DESI are discussed.  相似文献   

15.
A CE method utilizing triple quadrupole electrospray (ES) MS (MS/MS) detection was developed and validated for the simultaneous measurement of nucleoside 5'-triphosphate and 5'-monophosphate anabolites of the anti-HIV (human immunodeficiency virus) didanosine (ddAMP, ddATP) and stavudine (d4TMP, d4TTP), among a pool of 14 endogenous 5'-mono-, di-, and triphosphate nucleosides. These compounds were spiked and extracted from peripheral blood mononuclear cells (PBMCs) which are the sites of HIV replication and drug action. An acetic acid/ammonia buffer (pH 10, ionic strength of 40 mM) was selected as running electrolyte, and the separation was performed by the simultaneous application of a CE voltage of +30 kV and an overimposed pressure of 28 mbar (0.4 psi). The application of pressure assistance was needed to provide stable ES conditions for successful coupling. The coupling was carried out with a modified sheath-flow interface, with one uninterrupted capillary (80 cmx 50 microm id; 192 microm od) in a dimension that fits into the ESI needle to get a stable ion spray. Some CE-MS parameters such as overimposed pressure, sheath-liquid composition, sheath-liquid and sheath-gas flow rates, ES voltage, and the CE capillary position were optimized in order to obtain an optimal sensitivity. The use of perfluorinated alcohols and acids in the coaxial sheath-liquid make-up (2,2,2-trifluoroethanol + 0.2 mM tridecafluoroheptanoic acid) appeared to provide the best MS sensitivity and improve the stability of spray. The linearity of the CE-MS and CE-MS/MS methods was checked under these conditions. Validation parameters such as accuracy, intraday and interday precision, and LOQs were determined in CE-MS/MS mode. Finally, the quantitation of d4T-TP and ddA-TP was validated in this CE-MS/MS system.  相似文献   

16.
The on-line coupling of capillary electrophoresis (CE) and mass spectrometry (MS) via atmospheric pressure photoionization (APPI) is demonstrated. To achieve CE-APPI-MS, an adapted coaxial sheath-flow interface was combined with an ion-trap mass spectrometer equipped with an APPI source originally designed for liquid chromatography-MS. Effective photoionization of test compounds was accomplished after optimization of several interface and MS parameters, and of the composition and flow rate of the sheath liquid. Further enhancement of the ionization efficiency could be achieved by adding a dopant, such as acetone or toluene, to the sheath liquid to aid indirect ionization. Acetone significantly increased the ionization of the polar test compounds by proton transfer, while toluene was more useful for the enhanced formation of molecular ions from nonpolar compounds. The effect of several common CE background electrolytes (BGEs) on the APPI-MS response of the analytes was also studied. It appeared that in contrast with electrospray ionization, nonvolatile BGEs do not cause suppression of analyte signals using APPI. Therefore, in CE-APPI-MS, a variety of buffers can be chosen, which obviously is a great advantage during method development. Remarkably, also sodium dodecyl sulfate (SDS) did not affect the photoionization of the test compounds, indicating a strong potential of APPI for the on-line coupling of micellar electrokinetic chromatography (MEKC) and MS.  相似文献   

17.
Arrays of chemically etched emitters with individualized sheath gas capillaries were developed to enhance electrospray ionization (ESI) efficiency at subambient pressures. By incorporating the new emitter array in a subambient pressure ionization with nanoelectrospray (SPIN) source, both ionization efficiency and ion transmission efficiency were significantly increased, providing enhanced sensitivity in mass spectrometric analyses. The SPIN source eliminates the major ion losses of conventional ESI-mass spectrometry (MS) interfaces by placing the emitter in the first reduced pressure region of the instrument. The new ESI emitter array design developed in this study allows individualized sheath gas around each emitter in the array making it possible to generate an array of uniform and stable electrosprays in the subambient pressure (10 to 30 Torr) environment for the first time. The utility of the new emitter arrays was demonstrated by coupling the emitter array/SPIN source with a time of flight (TOF) mass spectrometer. The instrument sensitivity was compared under different ESI source and interface configurations including a standard atmospheric pressure single ESI emitter/heated capillary, single emitter/SPIN and multi-emitter/SPIN configurations using an equimolar solution of nine peptides. The highest instrument sensitivity was observed using the multi-emitter/SPIN configuration in which the sensitivity increased with the number of emitters in the array. Over an order of magnitude MS sensitivity improvement was achieved using multi-emitter/SPIN compared with using the standard atmospheric pressure single ESI emitter/heated capillary interface. Graphical Abstract
?  相似文献   

18.
Mao X  Chu IK  Lin B 《Electrophoresis》2006,27(24):5059-5067
Microchip was coupled with MS through a stable, sensitive, and controllable sheath-flow nanoelectrospray (nES) interface for glycoprotein and glycopeptide analysis. The nano-ESI (nESI) was made with a delivery capillary, a commercial nES capillary, and a stainless steel (SS) tube which were connected together through a tee unit. High voltage for nES was applied on the SS tube and the commercial nES capillary was used as nES emitter. The delivery capillary was attached to the microchannel for delivering liquid from microchip to the nESI source. The flow rate of sheath liquid was optimized to be 100-200 nL/min which largely reduced the sample dilution. The detection limit of peptides on this microchip/MS platform was at femtomole level. Glycoprotein and glycopeptides were also successfully analyzed on the platform. All the glycoforms and glycopeptides of ribonuclease B (RNase B) were identified with this method. Some structures of the glycopeptides from RNase B were further characterized with MS/MS on the microchip, coupled with a quadrupole IT-MS.  相似文献   

19.
Capillary electrophoresis-electrospray ionization-mass spectrometry has the potential to become a preferred tool for the analysis of biological mixtures and other complex samples. The development of improved interfaces in the past twenty years has been critical in demonstrating the feasibility of this technique. However, a compromise still exists between interfaces that give optimal performance and those that are practical for commercial applications. The first section of this review focuses on the technological advances in CE-ESI-MS as they relate to the key interface features for both sheath-flow and sheathless systems: delivery of the sheath liquid, shaping of the emitter tip, formation of electrical contact, and practicality in terms of ease of use and lifetime. In the second section, we review the fundamental processes that affect interface performance. Because of the complex natures of both capillary electrophoresis and electrospray ionization, flow rate, arrangement of the electrical circuit, electrochemistry, tip geometry and location of electrical contact must all be carefully managed in the design of a successful interface.  相似文献   

20.
Monolithic columns having long hydrocarbon chains were prepared by in-situ polymerization in capillary fused silica tubing. The capillary columns were coupled with a newly developed carbon fiber electrospray ionization (ESI) emitter for proteomic analysis using sheathless capillary HPLC-ESI mass spectrometry (MS). The sample loading capacity and chromatographic performance of the styrene-based monolithic column, which was prepared by photo-polymerization of octylstyrene (OS) and divinylbenzene (DVB) were compared with that of the methacrylate-based monolithic column composed of lauryl methacrylate (LMA) and ethylene dimethacrylate (EDMA). The sample loading ability of tryptic digested protein in poly-OS (POS)-DVB column was higher than that of poly-LMA (PLMA)-EDMA column, possibly due to the irregular and rugluous surface offering a greater surface area of POS-DVB stationary phase. The POS-DVB column also provided better separation efficiency in the separation of high concentration (10 microg) of tryptic digested albumin bovine serum (BSA). Due to the successful interface of a highly efficient monolithic column and a stable, durable carbon fiber emitter, low femtomole levels of peptides were successfully separated and identified in the presence of large amounts of tryptic digested protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号