首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stabilization of long [n]cumulenes has traditionally been achieved by placing sterically bulky “protecting groups” at the termini, which shield the reactive carbon chain from unwanted reactions. Herein, we present an alternative strategy: stabilization through threading the sp‐hybridized carbon chain through a phenanthroline‐based macrocycle. The result is stable [9]cumulene rotaxanes that enable the study of properties as a function of length for [n]cumulenes in unprecedented detail, including by quantitative UV/Vis spectroscopy, cyclic voltammetry, and differential scanning calorimetry. The experimental results are supported by DFT calculations.  相似文献   

2.
Cumulenes are sometimes described as “metallic” because an infinitely long cumulene would have the band structure of a metal. Herein, we report the single‐molecule conductance of a series of cumulenes and cumulene analogues, where the number of consecutive C=C bonds in the core is n=1, 2, 3, and 5. The [n]cumulenes with n=3 and 5 have almost the same conductance, and they are both more conductive than the alkene (n=1). This is remarkable because molecular conductance normally falls exponentially with length. The conductance of the allene (n=2) is much lower, because of its twisted geometry. Computational simulations predict a similar trend to the experimental results and indicate that the low conductance of the allene is a general feature of [n]cumulenes where n is even. The lack of length dependence in the conductance of [3] and [5]cumulenes is attributed to the strong decrease in the HOMO–LUMO gap with increasing length.  相似文献   

3.
The elusive phosphinidene-chlorotetrylenes, [PGeCl] and [PSiCl] have been stabilized by the hetero-bileptic cyclic alkyl(amino) carbene (cAAC), N-heterocyclic carbene (NHC) ligands, and isolated in the solid state at room temperature as the first neutral monomeric species of this class with the general formulae (L)P-ECl(L′) (E=Ge, 3 a – 3 c ; E=Si, 6 ; L=cAAC; L′=NHC). Compounds 3 a – 3 c have been synthesized by the reaction of cAAC-supported potassium phosphinidenides [cAAC=PK(THF)x]n ( 1 a – 1 c ) with the adduct NHC:→GeCl2 ( 2 ). Similarly, compound 6 has been synthesized via reaction of 1 a with NHC:→SiCl2 adduct ( 4 ). Compounds 3 a – 3 c , and 6 have been structurally characterized by single-crystal X-ray diffraction, NMR spectroscopy and mass spectrometric analysis. DFT calculations revealed that the heteroatom P in 3 bears two lone pairs; the non-bonding pair with 67.8 % of s- and 32 % of p character, whereas the other lone pair is involved in π backdonation to the CcAAC-N π* of cAAC. The Ge atom in 3 contains a lone pair with 80 % of s character, and slightly involved in the π backdonation to CNHC. EDA-NOCV analyses showed that two charged doublet fragments {(cAAC)(NHC)}+, and {PGeCl} prefer to form one covalent electron-sharing σ bond, one dative σ bond, one dative π bond, and a charge polarized weak π bond. The covalent electron-sharing σ bond contributes to the major stabilization energy to the total orbital interaction energy of 3 , enabling the first successful isolations of this class of compounds ( 3 , 6 ) in the laboratory.  相似文献   

4.
The geometrical and basic energy parameters of monosubstituted cumulenes and their singly and doubly charged cations were calculated by the Hartree-Fock and density functional (DFT) methods at a B3LYP level of theory using the 6-31G(d) basis set. The substituent was fluorine, cyan, amino group, phenyl, cyanophenyl, aminophenyl, or dimethylaminophenyl. In extended linear carbon systems based on cumulene, rotation of a terminal fragment depends on the character of the highest occupied molecular orbital (HOMO) from which electrons are removed. The terminal group rotates through 90 only when the contribution of electron density from the π molecular orbital (MO) of unsubstituted cumulene to the HOMO of substituted cumulene is over 70%. Otherwise, the terminal group rotates through a smaller angle; with a contribution of less than 30%, the dication is planar in any substituted cumulene. Thus quantitative criteria have been determined to evaluate the specific structural effect due to ionization of substituted cumulenes.  相似文献   

5.
The use of cumulenes in synthetic transformations offers the possibility to form structurally interesting and potentially useful conjugated molecules. The cycloaddition reaction of a tetraaryl[5]cumulene with the electron‐deficient olefin tetracyanoethylene affords unusual products, including functionalized dendralenes and alkylidene cyclobutanes, as well as a symmetric [4]radialene that shows unique solvatochromism, with λmax values approaching the near‐IR region. These carbon‐rich products have been investigated spectroscopically and by X‐ray crystallographic analysis (five structures). The cycloaddition reaction sequence has also been explored by mechanistic and theoretical studies. The obtained results clearly demonstrate the potential of [5]cumulenes to serve as precursors for unprecedented conjugated structures.  相似文献   

6.
The first example of a new class of carbon‐rich molecules is introduced, namely, a derivative of tetraethynyl[5]cumulene (TE5C). The use of sterically demanding pendent groups is the decisive structural feature to provide a stable product. Whereas triisopropylsilyl groups are seemingly not sufficiently large to afford an isolable cumulene product, switching to the larger tris(3,5‐di‐tert‐butylphenyl)methyl (‘supertrityl’) groups gives a crystalline, stable compound ( [5]TE ). The structural and electronic properties of [5]TE are examined in comparison to its closest known molecular relatives, tetraaryl[5]cumulenes.  相似文献   

7.
Several theoretical studies have proposed strategies to generate helical molecular orbitals (Hel-MOs) in [n]cumulenes and oligoynes. While chiral even-[n] cumulenes feature Hel-MOs, odd-[n] cumulenes may also present them if the terminal groups lie in different planes. However, the proposed systems have been either experimentally unfeasible or resulted in opposite pseudo-degenerated Hel-MOs. We hereby demonstrate the introduction of a remarkable energy difference between helical orbitals of opposite twist by fixing the torsion angle between the terminal groups in butadiyne fragments. To experimentally lock the conformation of the terminal groups, we designed and synthesized cyclic architectures by combining acetylenes with chiral spirobifluorenes. The high stability of these systems with distinct helical orbitals allowed their isolation and full characterization. In our view, these results constitute a step further in the development of real systems presenting helical molecular orbitals.  相似文献   

8.
A variety of asymmetrically donor–acceptor‐substituted [3]cumulenes (buta‐1,2,3‐trienes) were synthesized by developed procedures. The activation barriers to rotation ΔG were measured by variable temperature NMR spectroscopy and found to be as low as 11.8 kcal mol?1, in the range of the barriers for rotation around sterically hindered single bonds. The central C?C bond of the push–pull‐substituted [3]cumulene moiety is shortened down to 1.22 Å as measured by X‐ray crystallography, leading to a substantial bond length alternation (BLA) of up to 0.17 Å. All the experimental results are supported by DFT calculations. Zwitterionic transition states (TS) of bond rotation confirm the postulated proacetylenic character of donor–acceptor [3]cumulenes. Additional support for the proacetylenic character of these chromophores is provided by their reaction with tetracyanoethene (TCNE) in a cycloaddition‐retroelectrocyclization (CA–RE) cascade characteristic of donor‐polarized acetylenes.  相似文献   

9.
Cyclic tetraaryl[5]cumulenes ( 1 a–f ) have been synthesized and studied as a function of increasing ring strain. The magnitude of ring strain is approximated by the extent of bending of the cumulenic core as assessed by a combination of X-ray crystallographic analysis and DFT calculations. Trends are observed in 13C NMR, UV-vis, and Raman spectra associated with ring strain, but the effects are small. In particular, the experimental HOMO-LUMO gap is not appreciably affected by bending of the [5]cumulene framework from ca. 174° (λmax=504 nm) in 1 a to ca. 178° (λmax=494 nm) in 1 f .  相似文献   

10.
A novel direct and practical synthetic route leading to N-heterocyclic carbene coinage metal complexes has been developed by using air stable, commercial available Au(III) salt [MAuCl4·2H2O], CuCln (n=1,2) or AgCl, and imidazolium salts as starting materials. The reaction proceeded without sacrificing carbene transfer agent (Ag2O) or using highly sensitive free NHC.  相似文献   

11.
An N‐heterocyclic‐carbene‐ligated 3‐benzoborepin with a bridged structure has been synthesized by double radical trans‐hydroboration of benzo[3,4]cycloundec‐3‐ene‐1,5‐diyne with an N‐heterocyclic carbene borane. The thermal reaction of the NHC‐ligated borepin at 150 °C gives an isolable NHC‐boranorcaradiene. Experiments and density functional theory calculations support a mechanism whereby the borepin initially rearranges to a boranorcaradiene by a thermal 6π‐electrocyclic reaction. This is followed by 1,5‐boron shift to give a rearranged boranorcaradiene. This shift occurs with stereoinversion at boron through a transition state with open‐shell diradical character. This is the first example of the isolation of a boranorcaradiene from a thermal reaction of a borepin.  相似文献   

12.
Helicenes and extended helical π-conjugated compounds have been widely studied, but most of the systems contain only aromatic benzene or heterocyclic rings, showing local aromatic character. Herein, new S-shaped double [6]helicene 1 , which has two embedded para-quinodimethane (p-QDM) units, is reported. Due to the existence of a proaromatic quinoidal substructure, it has open-shell diradical character. Its model compound, C-shaped single [6]helicene 2 containing one p-QDM unit, was also synthesized and compared. Their ground-state structures and electronic properties were systematically studied by a combination of various experimental methods assisted by theoretical calculations. Compound 1 has a double-helical structure in the crystal, with the two terminal [6]helicene units bent in opposite directions (i.e., anti form). However, an anti/syn isomerization process with a moderate interconversion energy barrier was observed on the NMR timescale. Compound 1 shows amphoteric redox behavior. It also exhibits open-shell diradical character (y0=12.1 %) and a small singlet–triplet gap. On the other hand, compound 2 has a typical closed-shell nature. The dication and dianion of 1 also show open-shell diradical character. The dianion of 2 and the tetraanion of 1 exhibit similar electronic structures to their respective isoelectronic structures, that is, [6]helicene and a double [6]helicene. This work provides some insights into the design and synthesis of stable helical π systems with open-shell diradical character and magnetic activity.  相似文献   

13.
Bonding is a fundamental aspect of organic chemistry, yet the magnitude of C=C bonding in [n]cumulenes as a function of increasing chain length has yet to be experimentally verified for derivatives longer than n=5. The synthesis of a series of apolar and unsymmetrically substituted tetraaryl[n]cumulenes (n=3, 5, 7, 9) was developed and rotational barriers for Z/E isomerization were measured using dynamic VTNMR spectroscopy. Both experiment and theory confirm a dramatic reduction in the rotational barrier (through estimation of ΔGrot for the isomerization) across the series, from >24 to 19 to 15 to 11 kcal?1 in [n]cumulenes with n=3, 5, 7, 9, respectively. The reduction in cumulenic bonding in longer cumulenes thus affords bond rotational barriers that are more characteristic of a sterically hindered single bond than that of a double bond.  相似文献   

14.
The addition of PPh2H, PPhMeH, PPhH2, P(para-Tol)H2, PMesH2 and PH3 to the two-coordinate Ni0 N-heterocyclic carbene species [Ni(NHC)2] (NHC=IiPr2, IMe4, IEt2Me2) affords a series of mononuclear, terminal phosphido nickel complexes. Structural characterisation of nine of these compounds shows that they have unusual trans [H−Ni−PR2] or novel trans [R2P−Ni−PR2] geometries. The bis-phosphido complexes are more accessible when smaller NHCs (IMe4>IEt2Me2>IiPr2) and phosphines are employed. P−P activation of the diphosphines R2P−PR2 (R2=Ph2, PhMe) provides an alternative route to some of the [Ni(NHC)2(PR2)2] complexes. DFT calculations capture these trends with P−H bond activation proceeding from unconventional phosphine adducts in which the H substituent bridges the Ni−P bond. P−P bond activation from [Ni(NHC)2(Ph2P−PPh2)] adducts proceeds with computed barriers below 10 kcal mol−1. The ability of the [Ni(NHC)2] moiety to afford isolable terminal phosphido products reflects the stability of the Ni−NHC bond that prevents ligand dissociation and onward reaction.  相似文献   

15.
A stable cyclic (alkyl)(amino)carbene (CAAC) 1 inserts into the para‐CF bond of pentafluoropyridine, and after fluoride abstraction, the iminium‐pyridyl adduct [ 3 ]+ was isolated. A cyclic voltammetry study shows a reversible three‐state redox system involving [ 3 ]+, [ 3 ] ? , and [ 3 ] ? . The CAAC‐pyridyl radical [ 3 ] ? , obtained by reduction of [ 3 ]+ with magnesium, has been spectroscopically and crystallographically characterized. In contrast to the lack of π communication between the CAAC and the pyridine units in cation [ 3 ]+, the unpaired electron of [ 3 ] ? is delocalized over an extended π system involving both heterocycles.  相似文献   

16.
A neutral C4 cumulene 1 that includes a cyclic alkyl(amino) carbene (cAAC), its air‐stable radical cation 1 .+, and dication 1 2+ have been synthesized. The redox property of 1 .+ was studied by cyclic voltammetry. EPR and theoretical calculations show that the unpaired electron in 1 .+ is mainly delocalized over the central C4 backbone. The commercially available CBr4 is utilized as a source of dicarbon in the cumulene synthesis.  相似文献   

17.
Quantum chemical studies using density functional theory and ab initio methods have been carried out for the molecules L-C3-L with L=PPh3 ( 1 ), NHCMe ( 2 , NHC=N-heterocyclic carbene), and cAACMe ( 3 , cAAC=cyclic (alkyl)(amino) carbene). The calculations predict that 1 and 2 have equilibrium geometries where the ligands are bonded with rather acute bonding angles at the linear C3 moiety. The phosphine adduct 1 has a synclinal (gauche) conformation whereas 2 exhibits a trans conformation of the ligands. In contrast, the compound 3 possesses a nearly linear arrangement of the carbene ligands at the C3 fragment. The bond dissociation energies of the ligands have the order 1 < 2 < 3 . The bonding analysis using charge and energy decomposition methods suggests that 3 is best described as a cumulene with electron-sharing double bonds between neutral fragments (cAACMe)2 and C3 in the respective electronic quintet state yielding (cAACMe)=C3=(cAACMe). In contrast, 1 and 2 possess electron-sharing and dative bonds between positively charged ligands [(PPh3)2]+ or [(NHCMe)2]+ and negatively charged [C3] fragments in the respective doublet state.  相似文献   

18.
Three four-coordinate N-heterocyclic carbene (NHC) copper(I) complexes, [Cu(Py-Im)(POP)](PF6) (P1), [Cu(Py-BenIm)(POP)](PF6) (P2), and [Cu(Py-c-BenIm)(POP)](PF6) (P3) (Py-Im = 3-methyl-1-(pyridin-2-yl)-1H-imidazolylidene, Py-BenIm = 3-methyl-1-(pyridin-2-yl)-1H-benzo[d]imidazolylidene, Py-c-BenIm = 3-methyl-1-(pyridin-2-ylmethyl)-1H-benzo[d]imidazolylidene, POP = bis([2-diphenylphosphino]-phenyl)ether), have been synthesized without transmetalation of the NHC–Ag(I) complex for the first time. The photophysical properties of the resultant NHC–Cu(I) complexes have been systematically investigated via spectroscopic methods. All complexes exhibit good photoluminescence properties with long excited-state lifetimes and moderate quantum yields. Density functional theory and time dependent density functional theory calculations were employed to rationalize the photophysical properties of the NHC–Cu(I) complexes.  相似文献   

19.
A fused π‐helical N‐heterocyclic carbene (NHC) system was prepared and examined through its diastereoisomerically pure cycloiridiated complexes. The latter display light‐green phosphorescence with unusually long lifetimes and circular polarization that depends on both the helical NHC P /M stereochemistry and the iridium Δ/Λ stereochemistry. These unprecedented features are attributed to extended π conjugation within the helical carbenic ligand and efficient helicene‐NHC–Ir interaction.  相似文献   

20.
A general regioselective rhodium‐catalyzed head‐to‐tail dimerization of terminal alkynes is presented. The presence of a pyridine ligand (py) in a Rh–N‐heterocyclic‐carbene (NHC) catalytic system not only dramatically switches the chemoselectivity from alkyne cyclotrimerization to dimerization but also enhances the catalytic activity. Several intermediates have been detected in the catalytic process, including the π‐alkyne‐coordinated RhI species [RhCl(NHC)(η2‐HC?CCH2Ph)(py)] ( 3 ) and [RhCl(NHC){η2‐C(tBu)?C(E)CH?CHtBu}(py)] ( 4 ) and the RhIII–hydride–alkynyl species [RhClH{? C?CSi(Me)3}(IPr)(py)2] ( 5 ). Computational DFT studies reveal an operational mechanism consisting of sequential alkyne C? H oxidative addition, alkyne insertion, and reductive elimination. A 2,1‐hydrometalation of the alkyne is the more favorable pathway in accordance with a head‐to‐tail selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号