首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 285 毫秒
1.
We describe here a comprehensive study of solution and solid-state properties of self-assembling triblock molecules composed of a hydrophilic dendron covalently linked to an aromatic rigid rod segment, which is in turn connected to a hydrophobic flexible coil. These dendron-rod-coil (DRC) molecules form well-defined supramolecular structures that possess a ribbonlike morphology as revealed by transmission-electron and atomic-force microscopy. In a large variety of aprotic solvents, the DRC ribbons create stable networks that form gels at concentrations as low as 0.2% by weight DRC. The gels are thermally irreversible and do not melt at elevated temperatures, indicating high stability as a result of strong noncovalent interactions among DRC molecules. NMR experiments show that the strong interactions leading to aggregation involve mainly the dendron and rodlike blocks, whereas oligoisoprene coil segments remain solvated after gelation. Small-angle X-ray scattering (SAXS) profiles of different DRC molecules demonstrate an excellent correlation between the degree-of-order in the solid-state and the stability of gels. Studies on two series of analogous molecules suggest that self-assembly is very sensitive to subtle structural changes and requires the presence of at least four hydroxyl groups in the dendron, two biphenyl units in the rod, and a coil segment with a size comparable to that of the rodlike block. A detailed analysis of crystal structures of model compounds revealed the formation of stable one-dimensional structures that involve two types of noncovalent interactions, aromatic pi-pi stacking and hydrogen bonding. Most importantly, the crystal structure of the rod-dendron compound shows that hydrogen bonding not only drives the formation of head-to-head cyclic structures, but also generates multiple linkages between them along the stacking direction. The cyclic structures are tetrameric in nature and stack into ribbonlike objects. We believe that DRC molecules utilize the same arrangement of hydrogen bonds and stacking of aromatic blocks observed in the crystals, explaining the exceptional stability of the nanostructures in extremely dilute solutions as well the thermal stability of the gels they form. This study provides mechanistic insights on self-assembly of triblock molecules, and unveils general strategies to create well-defined one-dimensional supramolecular objects.  相似文献   

2.
The rod‐coil molecules with n‐shaped rod building block, consisting of an anthracene unit and two biphenyl groups linked together with acetylenyl bonds at the 1,8‐position of anthracene as a rigid rod segment, and the alkyl or alkyloxy chains with various length (i.e., methoxy‐ ( 1 ), octyl‐ ( 2 ), hexadecyl‐ ( 3 )) at the 10‐position of anthracene and poly(ethylene oxide) with the number of repeating units of 7 connected with biphenyl as coil segments were synthesized. The molecular structures were characterized by 1H NMR and MALDI‐TOF mass spectroscopy. The self‐assembling behavior of new type of molecules 1–3 was investigated by means of DSC, POM, and SAXS at the bulk state. These molecules with a n‐shaped rod building block segment self‐assemble into supramolecular structures through the combination of π–π stacking of rigid rod building blocks and microphase separation of the rod and coil blocks. SAXS studies reveal that molecules 1 and 2 show hexagonal columnar and rectangular columnar structures in the liquid crystalline phase, respectively; meanwhile, molecules 1–3 self‐organize into lamellar structures in the crystalline state. In addition, self‐assembling studies of molecules 1–3 by DLS and TEM indicated that these molecules self‐assemble into elongated nanofibers in aqueous medium. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1415–1422, 2010  相似文献   

3.
刚柔嵌段共聚物是指刚性链段和柔性链段以共价键相连形成的共聚物。不仅由于刚性链段有序排列的特点使得其自组装行为更为丰富多样,而且刚性分子将优异的功能特性赋予到超分子组装体中,有望实现超分子材料的功能应用。这类嵌段共聚物在溶液中自组装形成的聚集体会对外界的刺激(例如pH、光、温度、化学添加剂等)敏感,产生聚集体形态的变化。本文选取了部分典型的具有刺激响应性的刚柔嵌段共聚物,介绍了其智能自组装行为,并对其良好的发展前景做了展望。  相似文献   

4.
Conjugated rod-coil molecules, incorporating flexible and rigid blocks, have a strong affinity to self-organize into various supramolecular nanostructures in the bulk state.In this study, we report synthesized oligomers containing cruciform 9,10-bis(arylethynyl)anthracene units and characterized their self-assembly behavior. The molecular structures were characterized with 1H, 13C NMR, and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectroscopy. An investigation of the supramolecular nanostructures of these molecules using differential scanning calorimetry, thermal polarized optical microscopy, and small-angle X-ray scattering revealed that the rod length of coil-rod-coil molecules with identical rod to coil volume ratios dramatically influences self-assembly behavior in the bulk state. Molecules 2 and 3 with relatively longer rod lengths self-assemble into lamellar structures in the solid state, whereas, molecules 1 and 4 self-assemble into two-dimensional (2-D) oblique columnar structures in the liquid crystalline phase, in addition, on heating, molecule 1 transforms from the oblique columnar phase to the nematic phase.  相似文献   

5.
6.
Self-assembly represents a promising strategy for surface functionalisation as well as creating nanostructures with well-controlled, tailor-made properties and functionality. Molecular self-assembly at solid surfaces is governed by the subtle interplay between molecule–molecule and molecule–substrate interactions that can be tuned by varying molecular building blocks, surface chemistry and structure as well as substrate temperature.In this review, basic principles behind molecular self-assembly of organic molecules on metal surfaces will be discussed. Controlling these formation principles allows for creating a wide variety of different molecular surface structures ranging from well-defined clusters, quasi one-dimensional rows to ordered, two-dimensional overlayers. An impressive number of studies exist, demonstrating the ability of molecular self-assembly to create these different structural motifs in a predictable manner by tuning the molecular building blocks as well as the metallic substrate.Here, the multitude of different surface structures of the natural amino acid cysteine on two different gold surfaces observed with scanning tunnelling microscopy will be reviewed. Cysteine on Au(110)-(1×2) represents a model system illustrating the formation of all the above mentioned structural motifs without changing the molecular building blocks or the substrate surface. The only parameters in this system are substrate temperature and molecular coverage, controlling both the molecular adsorption state (physisorption versus chemisorption) and molecular surface mobility. By tuning the adsorption state and the molecular mobility, distinctly different molecular structures are formed, exemplifying the variety of structural motifs that can be achieved by molecular self-assembly.  相似文献   

7.
几种自组装拉胀分子网络的分子模拟   总被引:1,自引:1,他引:1  
报道了几种蜈蚣形、双足蜈蚣形聚合物 ,以及单箭头、双箭头形小分子通过氢键自组装形成拉胀分子网络的分子设计 .分子力学计算结果表明这些自组装分子网络靠氢键相互作用规则排列 ,具有类似倒插蜂窝网络结构 ,所设计的聚合物、小分子的合成较之以往报道的二维网络结构的合成简便易行 ,为真正分子水平意义上的拉胀结构的实现提供了新的思路和指导  相似文献   

8.
Biomimetic, strain-stiffening materials are reported, made through self-assembly and covalent fixation of small building blocks to form fibrous hydrogels that are able to stiffen by an order of magnitude in response to applied stress. The gels consist of semi-flexible rodlike micelles of bisurea bolaamphiphiles with oligo(ethylene oxide) (EO) outer blocks and a polydiacetylene (PDA) backbone. The micelles are fibers, composed of 9–10 ribbons. A gelation method based on Cu-catalyzed azide–alkyne cycloaddition (CuAAC), was developed and shown to lead to strain-stiffening hydrogels with unusual, yet universal, linear and nonlinear stress–strain response. Upon gelation, the X-ray scattering profile is unchanged, suggesting that crosslinks are formed at random positions along the fiber contour without fiber bundling. The work expands current knowledge about the design principles and chemistries needed to achieve fully synthetic, biomimetic soft matter with on-demand, targeted mechanical properties.  相似文献   

9.
Directing the self-assembly of organic building blocks with 2D templates has been a promising method to create molecular superstructures having unique physicochemical properties. In this work the on-surface self-assembly of simple ditopic functional molecules confined inside periodic nanotemplates was modeled by means of the lattice Monte Carlo simulation method. Two types of confinement, that is honeycomb porous networks and parallel grooves of controlled diameter and width were used in the calculations. Additionally, the effect of (pro)chirality of the adsorbing molecules on the outcome of the templated self-assembly was examined. To that end, enantiopure and racemic assemblies were studied and the resulting structures were identified and classified. The obtained findings demonstrated that suitable tuning of the structural parameters of the templates enables directing the self-assembly towards linear and cyclic aggregates with controlled size. Moreover, chiral resolution of the molecular conformers using honeycomb networks with adjusted pore size was found possible. Our theoretical predictions can be helpful in designing structured surfaces to direct self-assembly and polymerization of organic functional building blocks.  相似文献   

10.
Control of thin film morphology by self-assembly of, respectively, p-type oligo(p-phenylenevinylene)s (OPV)s and n-type perylenebisimides (PBI)s in solution prior to processing, results in film architectures consisting of uniform rodlike domains as shown by atomic force microscopy. Such films from self-assembled molecules show superior charge-carrier mobility in comparison with films processed from molecular dissolved molecules. Moreover, connecting the OPV and PBI building blocks through hydrogen-bonding interactions creates dyad complexes that cofacially stack in apolar solvents. Ambipolar field-effect transistors constructed from these dyad complexes show two independent pathways for charge transport. In strong contrast, processing of OPV and PBI, that are not connected by hydrogen bonds, form charge transfer donor-acceptor complexes that show no mobility in field-effect transistors presumably due to an unfavorable supramolecular organization.  相似文献   

11.
Controllable self-assembly of nanoscale building blocks into larger specific structures provides an effective route for the fabrication of new materials with unique optical, electronic, and magnetic properties. The ability of nanoparticles (NPs) to self-assemble like molecules is opening new research frontiers in nanoscience and nanotechnology. We present a new class of amphiphilic "colloidal molecules" (ACMs) composed of inorganic NPs tethered with amphiphilic linear block copolymers (BCPs). Driven by the conformational changes of tethered BCP chains, such ACMs can self-assemble into well-defined vesicular and tubular nanostructures comprising a monolayer shell of hexagonally packed NPs in selective solvents. The morphologies and geometries of these assemblies can be controlled by the size of NPs and molecular weight of BCPs. Our approach also allows us to control the interparticle distance, thus fine-tuning the plasmonic properties of the assemblies of metal NPs. This strategy provides a general means to design new building blocks for assembling novel functional materials and devices.  相似文献   

12.
Molecular self-assembly has emerged as a powerful technology for the synthesis of nanostructured materials. In design of various molecular assemblies, hydrogen bonding is a preferably selected intra- or inter-molecular weak interaction in recent research by virtue of the directionality and specificity. The research for novel hydrogen bond building blocks that self-assembly into well defined structures is great important not only for gaining an understanding of the concepts of self-assembly but also for the design of new molecular materials. Pyrrolic amide moiety has one hydrogen bond acceptor (C =O) and two hydrogen bond donors (pyrrole NH and amide NH). By deliberately design, pyrrolic amide compounds would be new kinds hydrogen bond building blocks. So, pyrrolic amide compounds 1 ~ 6, which bear one, two or three pyrrolic amide moieties respectively, were designed and synthesized.  相似文献   

13.
Self-assembly of functionalized nanoscale building blocks is a promising strategy for "bottom-up" materials design. Recent experiments have demonstrated that the self-assembly of polyhedral oligomeric silsesquioxane (POSS) "nanocubes" functionalized with organic tethers can be utilized to synthesize novel materials with highly ordered, complex nanostructures. We have performed molecular simulations for a simplified model of monotethered POSS nanocubes to investigate systematically how the parameters that control the assembly process and the resulting equilibrium structures, including concentration, temperature, tether lengths, and solvent conditions, can be manipulated to achieve useful structures via self-assembly. We report conventional lamellar and cylindrical structures that are typically found in block copolymer and surfactant systems, including a thermotropic order-order transition, but with interesting stabilization of the lamellar phase caused by the bulkiness and cubic geometry of the POSS nanocubes.  相似文献   

14.
孟雨樟  高玉霞  巨勇  胡君 《化学通报》2020,83(4):318-324
天然五环三萜在自然界中广泛存在,由六个异戊二烯单元组成,可以从动植物中分离获取。因具有手性刚性骨架、多反应位点、独特组装性能、良好生物相容性及药理活性,其在超分子化学、智能材料、界面化学、药物传输等领域有着不可忽视的潜力。本文基于课题组近年来在天然五环三萜有机功能分子方面的工作,概述了含甘草次酸和甘草酸骨架的功能小分子和高分子的设计、合成及其在水凝胶、有机凝胶、有机-无机复合凝胶、手性材料、温敏和自愈合材料、农用Pickering乳液、准聚轮烷等方面的应用。  相似文献   

15.
We use a hybrid density functional approach to investigate the microstructure and self-assembly of inhomogeneous rigid rodlike chains between two neutral surfaces, i.e., two hard walls. In the calculation, the rodlike molecule is modeled as a rigid rod linearly connected by the tangent sphere beads. The hybrid method combines a single-chain Monte Carlo (MC) simulation for the ideal-gas part of Helmholtz energy and a DFT approach for the excess Helmholtz energy. The DFT approach includes a modified fundamental measure theory for the excluded-volume effect, the first order thermodynamics perturbation theory for chain connectivity, and the mean field approximation for the van der Waals attraction. We investigate the effect of the chain length (i.e., aspect ratio) of the rodlike molecule and the separation between two surfaces on the microstructure and self-assembly of inhomogeneous rigid rodlike chains. For the athermal systems, the rodlike chain fluids present a smaller partitioning coefficient compared to the flexible chain fluids. For the thermal systems, lamellar thin films formed by the rigid rodlike molecules perpendicular to the neutral surface are observed. The effects of the head-head interaction and the separation on the self-assembly of the rodlike chain fluids in the slit are investigated.  相似文献   

16.
Supramolecular self-assembly stands for the spontaneous aggregation of small organic compounds or polymers into ordered structures at any scale. When being induced by inherent molecular chiral centers or ambient asymmetric factors, asymmetric spatial arrangement between building units shall occur, which is defined as supramolecular chirality. Except for molecular design, utilizing external stimulus factors to tune supramolecular chirality is a promising approach. In this Concept article, we particularly discuss the important role of solvents in manipulating the chirality of self-assembled systems. The impact of solvents on the chirality is generally based on three properties of solvents, i.e., chirality, polarity, and active coassembly with building blocks. Molecular self-assembly in chiral solvents could undergo the chirality transfer, exhibiting a chiral induction effect. Solvent polarity often determines intermolecular orientation. As a consequence, those building blocks with both polar and apolar segments might change their chirality depending on the solvent polarity. We elaborate the active participation of solvent molecules into ordered structures together with building blocks, where solvents and building blocks exhibit a coassembly manner. By specific treatments such as heating and cooling, solvents could be released or re-entrapped, allowing a smart control over supramolecular chirality. The solvent effect in manipulating two-dimensional chiral self-assemblies is then discussed. The perspective and future development in this research field are presented at last.  相似文献   

17.
Inspired by sophisticated biological structures and their physiological processes,supramolecular chemistry has been developed for understanding and mimicking the behaviors of natural species. Through spontaneous self-assembly of functional building blocks,we are able to control the structures and regulate the functions of resulting supramolecular assemblies.Up to now,numerous functional supramolecular assemblies have been constructed and successfully employed as molecular devices, machines and biological diagnostic platforms.This review will focus on molecular structures of functional molecular building blocks and their assembled superstructures for biological detection and delivery.  相似文献   

18.
Control of the structure and function of self-assembled materials has been a significant issue in many areas of nanoscience. Among many different types of building blocks, dendritic ones have shown interesting self-assembly behaviour and functional performances due to their unique shape and multiple functionalities. Dendritic building blocks exhibit unique self-assembly behaviour in diverse environments such as aqueous and organic solutions, solid-liquid interfaces, and thermotropic solid conditions. Tuning the balance between hydrophilic and hydrophobic parts, as well as the external conditions for self-assembly, provides unique opportunities for control of supramolecular architectures. Furthermore, the introduction of suitable functional moieties into dendrons enables us to control self-assembly characteristics, allowing nanostructures to exhibit smart performances for electronic or biological applications. The self-assembly characteristics of amphiphilic dendrons under various conditions were investigated to elucidate how dendrons can assemble into nanoscopic structures and how these nanoassemblies exhibit unique properties. Well-defined nanostructures derived from self-assembly of dendrons provide an efficient approach for exhibition of unique functions at the nanoscale. This feature article describes the unique self-assembly characteristics of various types of dendritic building blocks and their potential applications as advanced materials.  相似文献   

19.
The design and construction of nanostructured materials using proper self-assembling molecular building blocks is a real challenge to scientists. Here, we present the formation of a new nano-architecture, i.e., nanostaircase in the solid state by using molecular building blocks, which are amenable to self-assembly in a directed manner to form the specific nanostructure. The molecular building blocks are terephthalamides 1-4, which are bis-terephthalamides of methyl esters of various α-amino acids including l-leucine 1, d-leucine 2, l-isoleucine 3, and α-aminoisobutyric acid (Aib) 4. All terephthalamides presented here, irrespective of their different side chain residues or stereochemistry, self-assemble to form supramolecular nanostaircase structures in crystals. Each terephthalamide contains two good hydrogen-bond donors and two hydrogen-bond acceptors. Two N-H?O hydrogen bonds and C-H?π interactions are responsible for the formation and stabilization of the nanostaircase structures in crystals. The molecular building blocks are packed orthogonally to each other in crystals and this arrangement can help the formation of nanostaircase structure upon self-assembly.  相似文献   

20.
The high potential of self-assembly processes of molecular building blocks is reflected in the vast variety of different functional nanostructures reported in the literature. The constituting units must fulfill several requirements like synthetic accessibility, presence of functional groups for appropriate intermolecular interactions and depending on the type of self-assembly processsignificant chemical and thermal stability. It is shown that oligopyridines are versatile building blocks for two- and three-dimensional (2D and 3D) self-assembly. They can be employed for building up different architectures like gridlike metal complexes in solution. By the appropriate tailoring of the heterocycles, further metal coordinating and/or hydrogen bonding capabilities to the heteroaromatic molecules can be added. Thus, the above-mentioned architectures can be extended in one-step processes to larger entities, or in a hierarchical fashion to infinite assemblies in the solid state, respectively. Besides the organizational properties of small molecules in solution, 2D assemblies on surfaces offer certain advantages over 3D arrays. By precise tailoring of the molecular structures, the intermolecular interactions can be fine-tuned expressed by a large variety of resulting 2D patterns. Oligopyridines prove to be ideal candidates for 2D assemblies on graphite and metal sufaces, respectively, expressing highly ordered structures. A slight structural variation in the periphery of the molecules leads to strongly changed 2D packing motifs based on weak hydrogen bonding interactions. Such 2D assemblies can be exploited for building up host-guest networks which are attractive candidates for manipulation experiments on the single-molecule level. Thus, "erasing" and "writing" processes by the scanning tunneling microscopy (STM) tip at the liquid/solid interface are shown. The 2D networks are also employed for performing coordination chemistry experiments at surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号