首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
4-(tert-Butylsulfanyl)-2,6-di(pyrazol-1-yl)pyridine (L) was obtained in low yield from a one-pot reaction of 2,4,6-trifluoropyridine with 2-methylpropane-2-thiolate and sodium pyrazolate in a 1:1:2 ratio. The materials [FeL2][BF4]2⋅solv ( 1[BF4]2 ⋅solv) and [FeL2][ClO4]2⋅solv ( 1[ClO4]2 ⋅solv; solv=MeNO2, MeCN or Me2CO) exhibit a variety of structures and spin-state behaviors including thermal spin-crossover (SCO). Solvent loss on heating 1[BF4]2x MeNO2 (x≈2.3) occurs in two steps. The intermediate phase exhibits hysteretic SCO around 250 K, involving a “reverse-SCO” step in its warming cycle at a scan rate of 5 K min−1. The reverse-SCO is not observed in a slower 1 K min−1 measurement, however, confirming its kinetic nature. The final product [FeL2][BF4]2⋅0.75 MeNO2 was crystallographically characterized, and shows abrupt but incomplete SCO at 172 K which correlates with disorder of an L ligand. The asymmetric unit of 1[BF4]2y Me2CO (y≈1.6) contains five unique complex molecules, four of which undergo gradual SCO in at least two discrete steps. Low-spin 1[ClO4]2 ⋅0.5 Me2CO is not isostructural with its BF4 congener, and undergoes single-crystal-to-single-crystal solvent loss with a tripling of the crystallographic unit cell volume, while retaining the P space group. Three other solvate salts undergo gradual thermal SCO. Two of these are isomorphous at room temperature, but transform to different low-temperature phases when the materials are fully low-spin.  相似文献   

2.
The synthesis, reduction, optical and e.p.r. spectral properties of a series of new binuclear copper(II) complexes, containing bridging moieties (OH, MeCO2 , NO2 , and N3 ), with new proline-based binuclear pentadentate Mannich base ligands is described. The ligands are: 2,6-bis[(prolin-1-yl)methyl]4-bromophenol [H3L1], 2,6-bis[(prolin-1-yl)methyl]4-t-butylphenol [H3L2] and 2,6-bis[(prolin-1-yl)methyl]4-methoxyphenol [H3L3]. The exogenous bridging complexes thus prepared were hydroxo: [Cu2L1(OH)(H2O)2] · H2O (1a), [Cu2L2(OH)(H2O)2] · H2O (1b), [Cu2L3(OH)(H2O)2] · H2O (1c), acetato [Cu2L1(OAc)] · H2O (2a), [Cu2L2(OAc)] · H2O (2b), [Cu2L3(OAc)] · H2O (2c), nitrito [Cu2L1(NO2)(H2O)2] · H2O (3a), [Cu2L2(NO2)(H2O)2] · H2O (3b), [Cu2L3(NO2)(H2O)2] · H2O (3c) and azido [Cu2L1(N3)(H2O)2] · H2O (4a), [Cu2L2(N3)(H2O)2] · H2O (4b) and [Cu2L3(N3)(H2O)2] · H2O (4c). The complexes were characterized by elemental analysis and by spectroscopy. They exhibit resolved copper hyperfine e.p.r. spectra at room temperature, indicating the presence of weak antiferromagnetic coupling between the copper atoms. The strength of the antiferromagnetic coupling lies in the order: NO2 N3 OH OAc. Cyclic voltammetry revealed the presence of two redox couples CuIICuII CuIICuI CuICuI. The conproportionality constant K con for the mixed valent CuIICuI species for all the complexes have been determined electrochemically.  相似文献   

3.
In the centrosymmetric dinuclear anions of the title bimetallic complex, {[Mg(H2O)6][Cu2(C8H2NO7)2]·2H2O}n, each CuII ion is strongly coordinated by four O atoms in a distorted square‐planar geometry. Two of these O atoms belong to phenolate groups and the other two to carboxylate groups from 5‐nitro‐2‐oxidoisophthalate (L1) trianions, derived from 5‐nitrobenzene‐1,2,3‐tricarboxylic acid (O2N–H3L). The phenolate O atoms bridge the two CuII ions in the anion. In addition, each CuII cation interacts weakly with a symmetry‐related carboxylate O atom of an adjacent L1 ligand, giving a square‐pyramidal coordination geometry. The copper residue forms a ladder‐like linear coordination polymer via L1 ligands. The [Mg(H2O)6]2+ cations sit on centres of inversion. The polymeric anions, cations and free water molecules are self‐assembled into a three‐dimensional supramolecular network via O—H...O hydrogen bonds.  相似文献   

4.
Exploring efficient heterogeneous catalysts for catalytic oxidation of chemical warfare agents (CWAs) is highly desired. As a class of discrete anionic metal oxide clusters, polyoxometalates (POMs) provide abundant catalytic active sites, thus resulting their rich redox properties. Here, a family of known POM-incorporated CuI-resorcin[4]arene metal-organic complexes, namely, [Cu4(TPTR4A)2][PW12O40](OH) ⋅ 0.5DMA ⋅ 5H2O ( Cu - PW ), [Cu4(TPTR4 A)2][PMo12O40](OH) ⋅ 2DMA ⋅ H2O ( Cu - PMo ) and [Cu4(TPTR4A)2][SiW12O40] ⋅ 2.5DMA ( Cu - SiW ) were utilized as catalysts to promote the oxidation of 2-chloroethyl ethyl sulfide (CEES). Strikingly, compared to the novel compound [Cu3Cl6(TPTR4A)(DMA)] ⋅ CH3CH2OH (defined as Cu - T ), the three complexes exhibited excellent stability, indicating that the integration of POMs and metal–organic units could improve the stability of the compounds. Moreover, Cu - PMo and Cu - PW showed higher activities for the catalytic oxidation of CEES to CEESO with selectivities both of 99 %.  相似文献   

5.
A tridentate N,O-donor, 1,3-bis(3,5-dimethylpyrazol-1-yl)propan-2-ol (HL), has been employed to synthesize cyano-bridged complexes and six heterometallic complexes with [Cu2L2] or [Cu2L2(H2O)] have been generated by using slow diffusion. With slightly different synthetic conditions, subtle variations in the crystal structures of the complexes occur. [Cu2L2][Fe(CN)5NO]?2CH3CN (1) and [Cu2L2][Fe(CN)5NO]?H2O (2), synthesized in different solvents with the same precursor, exhibit a very similar 1-D zig-zag chain motif in different space groups, P21 and P-1, respectively. Similarly, [Cu2L2(H2O)][Ni(CN)4]·H2O (3) and [Cu2L2][Ni(CN)4]?H2O (4), synthesized with different diffusion methods, feature trinuclear and 1-D zig-zag chain structures, which indicates a solvent effect of water. [Cu2L2(H2O)]2[Cu2L2][W(CN)8]2·8H2O (5) is composed of two [W(CN)8]3? and three [Cu2L2]2+ units. In the octanuclear structure, [W(CN)8]3? and one [Cu2L2]2+ bridge and the other two [Cu2L2]2+ are terminal to stop extending the 1-D structure. [CuL][Ag2.24Cu0.76(CN)4] (6) exhibits a discrete structure, in which the complex anion forms a unique 2-D 63 network and the complex cations are inserted in the space between two adjacent networks. Magnetic properties of 1 and 4 are discussed.  相似文献   

6.
The iron(III) spin-crossover compounds [Fe(Hthsa)(thsa)] ⋅ H2O ( 1 ), [Fe(Hth5Clsa)(th5Clsa)2] ⋅ H2O ( 2 ), and [Fe(Hth5Brsa)(th5Brsa)2] ⋅ H2O ( 3 ) (H2thsa=salicylaldehyde thiosemicarbazone, H2th5Clsa=5-chlorosalicylaldehyde thiosemicarbazone, and H2th5Brsa=5-bromosalicylaldehyde thiosemicarbazone) have been synthesized and their spin-transition properties investigated by magnetic susceptibility, Mössbauer spectroscopy, and differential scanning calorimetry measurements. The three compounds exhibit an abrupt spin transition with a thermal hysteresis effect. The more polarizable the substituent on the salicylaldehyde moiety, the more complete is the transition at room temperature with an increased degree of cooperativity. The molecular structures of 1 and 2 in the high-spin state are revealed. The occurrence of the light-induced excited-spin-state trapping phenomenon appears to be dependent on the substituent incorporated into the 5-position of the salicylaldehyde subunit. Whereas the compounds with an electron-withdrawing group (-Br or -Cl) exhibit light-induced trapped excited high-spin states with great longevity of metastability, the halogen-free compound does not, even though strong intermolecular interactions (such as hydrogen-bonding networks and π stacking) operate in the system. For compound 2 , the surface level of photoconversion is less than 35 %. In contrast, compound 3 displays full photoexcitation.  相似文献   

7.
The reaction of MnII(O2CMe)2 and NaCN or LiCN in water forms a light green insoluble material. Structural solution and Rietveld refinement of high-resolution synchrotron powder diffraction data for this unprecedented, complicated compound of previously unknown composition revealed a new alkali-free ordered structural motif with [MnII43-OH)4]4+ cubes and octahedral [MnII(CN)6]4− ions interconnected in 3D by MnII-N≡C-MnII linkages. The composition is {[MnII(OH2)3][MnII(OH2)]3}(μ3-OH)4][MnII(μ-CN)2(CN)4] ⋅ H2O=[MnII43-OH)4(OH2)6][MnII(μ-CN)2(CN)4] ⋅ H2O, which is further simplified to [Mn4(OH)4][Mn(CN)6](OH2)7 ( 1 ). 1 has four high-spin (S=5/2) MnII sites that are antiferromagnetically coupled within the cube and are antiferromagnetically coupled to six low-spin (S=1/2) octahedral [MnII(CN)6]4− ions. Above 40 K the magnetic susceptibility, χ(T), can be fitted to the Curie–Weiss expression, χ ∝(Tθ)−1, with θ=−13.4 K, indicative of significant antiferromagnetic coupling and 1 orders as an antiferromagnet at Tc=7.8 K.  相似文献   

8.
Abstract

Three diaminodiamido ligands (S,S)-N,N′-bis(prolyl)ethanediamine (ProNN-2), (S,S)-N,N′-bis(N-methylvalyl)ethanediamine (Me2ValNN-2), and (S,S)-N,N′-bis(N-methylphenylalanyl)-ethanediamine (Me2PheNN-2) were synthesised and their complex formation equilibria with copper(II) investigated in aqueous solution by potentiometry and, for ProNN-2, by electronic spectrophotometry. ProNN-2 forms the species [CuLH]3+, [Cu2L2]4+, [Cu2L2H?2]2+ and [CuLH?2], Me2PheNN-2 forms the complexes [CuLH]3+, [Cu2L2H?2]2+ and [CuLH?2], whereas Me2ValNN-2 forms the monomer [CuLH?1]+ but not the dimer. The dimeric cation [Cu2L2H?2]2+, of Me2PheNN-2 has severe steric requirements, as demonstrated by the X-ray crystal structure of the complex [Cu2L2H?2]Cl2· 12H2O, of the corresponding non-methylated ligand. Since copper(II) complexes of the ligands examined are used as additives to the mobile phase to perform chiral resolution of D,L-amino acids in RP-HPLC, the present results provide valuable clues to an understanding of the mechanism of the enantiomeric separation.  相似文献   

9.
Cobalt(II), nickel(II), and copper(II) complexes containing 5,12-di(4-bromophenyl)-7,14-dimethyl-1,2,4,8,9,11-hexaazacyclotetradeca-7,14-diene-3,10-dione (H2L1) and 5,12-diphenyl-7,14-dimethyl-1,2,4,8,9,11-hexaazacyclotetradeca-7,14-diene-3,10-dione (H2L2) have been synthesized. All complexes were characterized by elemental analysis, MALDI TOF-MS spectrometry, and electronic absorption spectroscopy. The crystal structures of two compounds, [Cu2(H2L1)Cl4]n and [NiL2], were determined by X-ray powder diffraction. In the polymeric [Cu2(H2L1)Cl4]n, the Cu2Cl4 units and H2L1 molecules are situated on inversion centers. Each Cu(II) has a distorted trigonal-bipyramidal coordination environment formed by N and O from H2L1 [Cu–N 2.340(14)?Å, Cu–O 1.952(11)?Å], two bridging chlorides [Cu–Cl 2.332(5), 2.279(5)?Å] and one terminal chloride [Cu–Cl 2.320(6)?Å]. In the [NiL2] complex, the Ni(II) situated on inversion center has a distorted square-planar coordination environment formed by four nitrogens from L2 [Ni–N 1.860(11), 1.900(11)?Å].  相似文献   

10.
Four unsymmetrical vic-dioximes: [L1H2] N-(4-butylphenyl)amino-amphi-glyoxime, [L2H2] N-(4-butylphenyl)amino-anti-glyoxime, [L3H2] N-(4-phenylazophenyl)amino-amphi-glyoxime and [L4H2] N-(4-phenylazophenyl)amino-anti-glyoxime have been prepared from amphi-chloroglyoxime, anti-chloroglyoxime, 4-butylaniline and 4-(phenylazo)aniline respectively. The complexes of these vic-dioximes with NiII, CoII, CuII and CdII ions have been investigated. All are insoluble in common solvents. Their i.r. spectra and elemental analyses are given, together with mass and 1H-n.m.r. spectra of the ligands.  相似文献   

11.
The ability of heterometallic Ge(IV) and Sn(IV) complexes [Co(H2O)6][Ge(HCitr)2] (I), [Co(H2O)6] [Sn(HCitr)2] (II), [Ni(H2O)6][Ge(HCitr)2] (III), [Ni(H2O)6][Sn(HCitr)2] (IV), [Mg(H2O)6][Ge(HCitr)2] (V), and [Mg(H2O)6][Sn(HCitr)2] (VI) (H4Citr is citric acid) to activate polycondensation of maleic and phthalic anhydrides with ethylene glycol was studied. Copolymerization of modified poly(glycol maleate phthalate) with triethylene glycol dimethacrylate was performed, and the copolymer characteristics were determined.  相似文献   

12.
The pendant‐armed ligands L1 and L2 were synthesized by N‐alkylation of the four secondary amine groups of the macrocyclic precursor L using o‐nitrobenzylbromide (L1) and p‐nitrobenzylbromide (L2). Nitrates and perchlorates of CuII, NiII and CoII were used to synthesize the metal complexes of both ligands and the complexes were characterized by microanalysis, MS‐FAB, conductivity measurements, IR and UV‐Vis spectroscopy and magnetic studies. The crystal structures of L1, [CuL1](ClO4)2·CH3CN·H2O, [CuL2](ClO4)2·6CH3CN, [CuL2][Cu(NO3)4]·5CH3CN·0.5CH3OH and [NiL2](ClO4)2·3CH3CN·H2O were determined by single crystal X‐ray crystallography. These structural analysis reveal the free ligand L1, three mononuclear endomacrocyclic complexes {[CuL1](ClO4)2·CH3CN·H2O, [CuL2](ClO4)2·6CH3CN and [NiL2](ClO4)2·3CH3CN·H2O} and one binuclear complex {[CuL2][Cu(NO3)4]·5CH3CN·0.5CH3OH} in which one of the metals is in the macrocyclic framework and the other metal is outside the ligand cavity and coordinated to four nitrate ions.  相似文献   

13.
New complexes of the formulae K3[RhL 3]·2 H2O, [PdL]·H2O and [M(LH2)Cl2] [whereM = Pd, Pt andLH2 = bis(o-aminobenzenesulfonyl)ethylenediamine] have been prepared and characterized by conductivity measurements, thermogravimetric analysis, X-ray powder patterns and IR, Ligand Field and1H-NMR spectroscopy.
Rhodium(III), Palladium(II)- und Platin(II)-Komplexe mit Bis(o-aminobenzolosulfonyl)ethylendiamin (Kurze Mitteilung)
Zusammenfassung Neue Komplexe der allgemeinen Formeln K3[RhL 3]·2H2O, [PdL]·H2O und [M(LH2)Cl2] mitM = Pd, Pt undLH2 = Bis(o-aminobenzolosulfonyl)ethylendiamin wurden dargestellt und mit Konduktionsmessungen, thermogravimetrischen Analysen, Röntgenstrukturanalysen, IR, Ligandfeld- und1H-NMR-Spektroskopie charakterisiert.
  相似文献   

14.
Novel oligonuclear complexes of Co(II), Ni(II), and Cu(II) with 4-(3,4-dichlorophenyl)-1,2,4-triazole (L) of the composition [M3L10(H2O)2](NO3)6 (M = Co(II), Ni(II)), [Ni3L6(H2O)6]Hal6 (Hal = Cl?, Br?), and [Cu5L16(H2O)2](NO3)10 · 2H2O were synthesized and studied by magnetic susceptibility, electronic and IR spectroscopy, and powder X-ray diffraction methods. All the above complexes are X-ray amorphous. Antifer-romagnetic exchange interactions between the M2+ ions were discovered in the [Co3L10(H2O)2](NO3)6 and [Ni3L10(H2O)2](NO3)6 complexes, whereas ferromagnetic exchange interactions were observed in the complexes [Ni3L6(H2O)6]Cl6, [Ni3L6(H2O)6]Br6, and [Cu5L16(H2O)2](NO3)10 · 2H2O.  相似文献   

15.
陈晓彤  董彬  崔孟超  王科志  金林培 《化学学报》2007,65(12):1181-1184
比较研究了以C2O42-为共反应物时5个结构相关的Ru(II)配合物[Ru(bpy)2L1]2+, [Ru(bpy)2L2]2+, [Ru(bpy)2L3]2+, [Ru(phen)2L1]2+和[Ru(phen)2L2]2+(其中bpy=2,2′-联吡啶, phen=1,10-邻菲啰啉, L1=4-羧基苯基咪唑[4,5-f][1,10]邻菲啰啉, L2=3-羧基-4-羟基苯基咪唑[4,5-f][1,10]邻菲啰啉, L3=3,4-二羟基苯基咪唑[4,5-f][1,10]邻菲啰啉)的电致化学发光(ECL)性质. 结果表明, 酚羟基的存在能有效地淬灭Ru(II)配合物[Ru(bpy)2L2]2+, [Ru(bpy)2L3]2+和[Ru(phen)2L2]2+的ECL, 其它Ru(II)配合物的ECL量子效率与[Ru(bpy)3]2+相差不大.  相似文献   

16.
Dehydration of (S,S)-1,2-bis(1H-benzo[d]imidazol-2-yl)ethane-1,2-diol (H4L) to (Z)-1,2-bis(1H-benzo[d]imidazol-2-yl)ethenol) (H3L′) was found to be metal-assisted, occurs under solvothermal conditions (H2O/CH3OH), and leads to [MnII4(H3L)4Cl2]Cl2 ⋅ 5 H2O ⋅ 5 CH3OH ( Mn4L4 ) and [MnII4(H2L′)63-OH)]Cl ⋅ 4 CH3OH ⋅ H2O ( Mn4L′6 ), respectively. Their structures were determined by single-crystal XRD. Extensive ESI-MS studies on solutions and solids of the reaction led to the proposal consisting of an initial stepwise assembly of Mn4L4 from the reactants via [MnL] and [Mn2L2] below 80 °C, and then disassembly to [MnL] and [MnL2] followed by ligand modification before reassembly to Mn4L′6 via [MnL′], [MnL′2], and [Mn2L′3] with increasing solvothermal temperature up to 140 °C. Identification of intermediates [Mn4LxL′6−x] (x=5, 4, 3, 2, 1) in the process further suggested an assembly/disassembly/in situ reaction/reassembly transformation mechanism. These results not only reveal that multiple phase transformations are possible even though they were not realized in the crystalline state, but also help to better understand the complex transformation process between coordination clusters during “black-box” reactions.  相似文献   

17.
The reaction of the aryl‐oxide ligand H2L [H2L = N,N‐bis(3, 5‐dimethyl‐2‐hydroxybenzyl)‐N‐(2‐pyridylmethyl)amine] with CuSO4 · 5H2O, CuCl2 · 2H2O, CuBr2, CdCl2 · 2.5H2O, and Cd(OAc)2 · 2H2O, respectively, under hydrothermal conditions gave the complexes [Cu(H2L1)2] · SO4 · 3CH3OH ( 1 ), [Cu2(H2L2)2Cl4] ( 2 ), [Cu2(H2L2)2Br4] ( 3 ), [Cd2(HL)2Cl2] ( 4 ), and [Cd2(L)2(CH3COOH)2] · H2L ( 5 ), where H2L1 [H2L1 = 2, 4‐dimethyl‐6‐((pyridin‐2‐ylmethylamino)methyl)phenol] and H2L2 [H2L2 = 2‐(2, 4‐dimethyl‐6‐((pyridin‐2‐ylmethylamino)methyl)phenoxy)‐4, 6‐dimethylphenol] were derived from the solvothermal in situ metal/ligand reactions. These complexes were characterized by IR spectroscopy, elementary analysis, and X‐ray diffraction. A low‐temperature magnetic susceptibility measurement for the solid sample of 2 revealed antiferromagnetic interactions between two central copper(II) atoms. The emission property studies for complexes 4 and 5 indicated strong luminescence emission.  相似文献   

18.
The complexes [Cu(L1)(H2O)2](BF4)2 · 2H2O ( 1 ) [L1 = 5, 16‐dimethyl‐2, 6, 13, 17‐tetraazatricyclo(14, 4, 01.18,07.12)docosane] and 0.5[Cu(L2)(NO3)2][Cu(L2)](NO3)2 ( 2 ) [L2 = dibenzyl‐5, 16‐dimethyl‐2, 6, 13, 17‐tetraazatricyclo(14, 4, 01.18,07.12)docosane] were synthesized and characterized by single crystal X‐ray analyses. In these constrained macrocycles, the central copper(II) atoms are in a tetragonally distorted octahedral environment with four nitrogen atoms of the macrocyclic ligands in equatorial positions and oxygen atoms from either water molecules or nitrato groups in axial positions. The macrocyclic ligands in both complexes adopt the most stable trans‐III conformation. The Cu–N distances [1.999(7)–2.095(7) Å] are typical for such complexes, but the axial ligands are weakly coordinating Cu–OH2 bonds [2.693(3) Å] and Cu–ONO2 bonds [2.873(7) Å] due to the combination of the pseudo Jahn–Teller effect and strong in‐plane ligand field. The crystals are stabilized by a three‐dimensional network by hydrogen bonds that are formed among the secondary nitrogen hydrogen atoms, oxygen atoms of water molecules, fluorine atoms of BF4, and oxygen atoms of NO3. The electronic absorption and IR spectroscopic properties are also discussed.  相似文献   

19.
Four cyanide-bridged heterometallic complexes {[CuPb(L 1 )][Fe III (bpb)(CN) 2 ]} 2 ·(ClO 4 ) 2 ·2H 2 O·2CH 3 CN (1), {[CuPb(L 1 )] 2 [Fe II (CN) 6 ](H 2 O) 2 }·10H 2 O (2), {[Cu 2 (L 2 )][Fe III (bpb)(CN) 2 ] 2 }·2H 2 O·2CH 3 OH (3) and {[Cu 2 (L 2 )] 3 [Fe III (CN) 6 ] 2 (H 2 O) 2 }·10H 2 O (4) have been synthesized by treating K[Fe III (bpb)(CN) 2 ] [bpb 2-=1,2-bis(pyridine-2-carboxamido)benzenate] and K 3 [Fe III (CN)] 6 with dinuclear compartmental macrocyclic Schiff-base complexes [CuPb(L 1 )] (ClO 4 ) 2 or [Cu 2 (L 2 )]·(ClO 4 ) 2 , in which H 2 L 1 was derived from 2,6-diformyl-4-methyl-phenol, ethylenediamine, and diethylenetriamine in the molar ratio of 2:1:1 and H 2 L 2 from 2,6-diformyl-4-methyl-phenol and propylenediamine in the molar ratio of 1:1. Single crystal X-ray diffraction analysis reveals that compound 1 displays a cyclic hexanuclear heterotrimetallic molecular structure with alternating [FeⅢ (bpb)(CN) 2 ]- and [CuPb(L 1 )] 2+ units. Complex 2 is of a neutral dumb-bell-type pentanuclear molecular configuration consisting of one [Fe(CN)6] 4- anion sandwiched in two [CuPu(L 1 )] 2+ cations, and the pentanuclear moieties are further connected by the hydrogen bonding to give a 2D supramolecular framework. Heterobimetallic complex 3 is a tetranuclear molecule composed of a centrosymmetric [Cu 2 (L2)] 2+ segment and two terminal cyanide-containing blocks [FeⅢ (bpb)(CN)2 ]- . Octanuclear compound 4 is built from two [Fe(CN)6]3- anions sandwiched in the three [Cu 2 L 2 ] 2+ cations. Investigation of their magnetic properties reveals the overall antiferromagnetic behavior in the series of complexes except 2.  相似文献   

20.
The new hydrides [(LL)2Pt2H3][BF4] (I: LL = 1,2-bis(diphenylphosphino)ethane; II: LL = 1,2-bis(diphenylarsino)ethane) were obtained by reaction of (LL)Pt(PzH)2][BF4]2 (PzH = 3,5-dimethylpyrazole) with KBH4 in MeOH or EtOH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号