首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the mechanisms of overcharging of a colloidal macroion in the presence of multivalent counterions are investigated by means of Monte Carlo simulations. This computational technique appears as a powerful tool for probing the validity of semianalytical models developed for this issue. In particular, the simulations performed are compared with the predictions of two different models based on the one component plasma (OCP) theory. Therein, the multivalent ionic atmosphere confined at the macroion surface is approximated by a two-dimensional Wigner crystal. These kinds of models are largely used in the literature since (in some cases) they present quite simple equations to describe the electric double layer (EDL) of macroions with different geometries in the presence of much smaller (but still multivalent) ions. In this sense, charge inversion phenomena of membranes, polyelectrolytes, DNA molecules, etc., are straightforwardly predicted in terms of these expressions. Unfortunately, comparisons between these predictions and experimental results are scarce, mostly due to the difficulty to reproduce the experimental conditions in the laboratory. Accordingly, the goal of the present paper is to simulate EDLs under real conditions (in which overcharging phenomena are expected to happen) and use the results obtained in this way for comparing with those obtained from OCP models.  相似文献   

2.
近年来,有关生物分子通过液-液相分离机制进行组织定位、功能调控的研究发展迅速。相分离产生的聚集体在众多细胞活动事件中发挥了关键作用。这些聚集体的生物功能是以相分离的物理化学性质为基础的。本文将从相分离聚集体的基本性质、相图、微观结构,相分离的统计热力学、实验和分子模拟研究等方面阐释相分离物理化学机制研究相关进展。对于生物分子相分离的重要功能体系进行了列举和归纳,收集了相分离研究的模式体系,探讨了生物分子相分离的生物功能同物理化学机制之间的关系,总结了生物分子相分离的调控机制和调控分子的设计方法,并对生物分子相分离物理化学机制研究的未来发展方向进行了展望。  相似文献   

3.
The charge density of DNA is a key parameter in strand hybridization and for the interactions occurring between DNA and molecules in biological systems. Due to the intricate structure of DNA, visualization of the surface charge density of DNA nanostructures under physiological conditions was not previously possible. Here, we perform a simultaneous analysis of the topography and surface charge density of DNA nanostructures using atomic force microscopy and scanning ion conductance microscopy. The effect of in situ ion exchange using various alkali metal ions is tested with respect to the adsorption of DNA origami onto mica, and a quantitative study of surface charge density reveals ion exchange phenomena in mica as a key parameter in DNA adsorption. This is important for structure-function studies of DNA nanostructures. The research provides an efficient approach to study surface charge density of DNA origami nanostructures and other biological molecules at a single molecule level.  相似文献   

4.
《Chemphyschem》2003,4(4):321-321
The cover picture shows an intriguing effect in molecular systems, which is caused by the parity‐violating weak interactions: The chemical shifts of magnetic nuclei are predicted to differ for the two enantiomers of a chiral compound! While in the R enantiomer the nucleus (red) of the yellow center gives rise to the red NMR signal, the corresponding nucleus of the S enantiomer (green) is expected to absorb at a slightly different frequency. The ab initio approach presented by Laubender and Berger on pp. 395–399 allows for a prediction of the resulting parity‐violating line splitting (shown in the black curve) and for the identification of molecular candidates that are well‐suited to the first successful measurement of parity‐violating effects in molecules.  相似文献   

5.
Purely ionic interactions in natural and synthetic macromolecules involve the mutual interaction of fixed charges and their interaction with mobile ions. Such charge‐dependent interactions lead to well‐documented effects, including chain expansion of polyelectrolytes, globularization of polyampholytes, distributions of mobile ions according to charge screening, or ion condensation models. A variety of structural features, functions, and applications of these systems is amplified by the superimposition of charge‐independent effects associated with the occurrence of less polar or hydrophobic groups, special salts, surfactants, or complementary protein assemblies. For instance, ionic and hydrophobic attractive interactions stabilize pearls (or rings)‐on‐a‐string conformations, possibly a model for the formation of the chromatin assembly. The attractive interactions due to hydrophobic fatty acid groups attached to polysaccharides promote the formation of vesicles that entrap and slowly release water‐soluble drugs. Intra‐ and intermolecular associations based on ion‐pairing mixed interactions also control the formation of host–guest compounds, protein conformation, and the assembly of layered polyelectrolytes. Metallo‐supramolecular polymers and networks are formed due to the coordination of multivalent cations with bi‐ and trifunctional organic ligands. The association of lithium salts to polymers in the absence of water allows the formation of highly efficient energy sources. It also allows the identification of the ionic species that control charge‐independent contributions to Hofmeister effects. This critical review presents a synthetic classification of systems displaying ionic mixed interactions, and a discussion of underlying molecular mechanisms.  相似文献   

6.
High molecular weight nonionic surfactants have been chemically modified to bind multivalent ions reversibly by using a moderate temperature stimulus as an on/off mechanism. Only above the critical micellization temperature (CMT) does binding of multivalent ions take place, whereas below the CMT, no binding occurs to the free surfactant molecules. Different calorimetric techniques have been used to prove the reversible binding of multivalent ions. This tunable binding of multivalent metal ions allows for the improvement of many ion-exchange processes and offers attractive opportunities in the biomedical field.  相似文献   

7.
Molecular recognition of host/guest molecules represents the basis of many biological processes and phenomena. Enzymatic catalysis and inhibition, immunological response, reproduction of genetic information, biological regulatory functions, the effects of drugs, and ion transfer—all these processes include the stage of structure recognition during complexation. The goal of this review is to solicit and publish the latest advances in the design and sensing and binding abilities of porphyrin-based heterotopic receptors with well-defined geometries, the recognition ability of which is realized due to ionic, H-bridge, charge transfer, hydrophobic, and hydrophilic interactions. The dissection of the considered low-energy processes at the molecular scale expands our capabilities in the development of effective systems for controlled recognition, selective delivery, and prolonged release of substrates of different natures (including drugs) to their sites of functioning.  相似文献   

8.
Dendritic molecules constitute one of the most exciting areas of modern nanochemistry, largely as a consequence of the unique properties associated with their branched architectures. This article describes how 'dendritic function' can also be achieved using small, synthetically accessible branched building blocks (individual dendrons) which simply self-assemble via non-covalent interactions to generate dendritic nanoscale architectures with novel behaviour. (a) Using non-covalent interactions at the focal point of a dendron allows the self-assembly of nanometre-sized supramolecular dendrimers around an appropriate template species. Such systems have potential applications in the controlled encapsulation and release of active ingredients. (b) Employing non-covalent intermolecular dendron-dendron interactions can give rise to the hierarchical assembly of nanostructured materials. Such assemblies of dendritic molecules ultimately express their molecular scale information on a macroscopic scale, and therefore have applications in materials science, for example as gels. (c) The multiple surface groups of dendrons are capable of forming multiple interactions with large surfaces, such as those found on biomolecules or in biological systems. Employing multivalent interactions between dendron surfaces and biological molecules opens up the potential application of dendritic systems as medicinal therapies. In summary, dendritic supermolecules offer a potentially cost-effective approach to the future application of dendritic systems to a range of real-world problems.  相似文献   

9.
Electronic energy level set topologies in the abstract nuclear charge space Z of molecular systems are defined and analyzed. Two theorems, one on the general convexity of level sets in Z, another on homotopies of boundaries of level sets, induced by nuclear geometry variations in the nuclear configuration space R, are proven. The applications of the two theorems are illustrated by examples of various molecules and ions.  相似文献   

10.
It has been shown that the main directions of the fragmentation of the molecular negative ions are connected with the formation of systems of conjugated bonds and the delocalization of the negative charge over a π-system of electrons. The mass spectrometry of the negative ions formed by the dissociative capture of electrons (DCE) is promising for the study of the molecules of steroid compounds.  相似文献   

11.
A new quantum-chemical method for demarcation between the basic mechanisms of mutual influence of structural fragments in complex organic molecules (inductive effect, conjugation,etc.) and for assessment of their significance for particular physicochemical properties is proposed. The effects of different channels of intramolecular interaction on the molecular geometry and energy, charge distribution, and the molecular orbital structures and energies were considered taking vinyl halides as examples. In systems with an interfragment bond of high polarity, separation of the contribution of the inductive effect is to a great extent meaningless, while π-conjugation can be considered independently. The method allows a more valid interpretation of the results of quantum-chemical calculations in terms of theoretical organic chemistry.  相似文献   

12.
"Like-charge attraction" is a phenomenon found in many biological systems containing DNA or proteins, as well as in polyelectrolyte systems of industrial importance. "Like-charge attraction" between polyanions is observed in the presence of mobile multivalent cations. At a certain limiting concentration of cations, the negatively charged macroions cease to repel each other and even an attractive force between the anions is found. With classical molecular dynamics simulations it is possible to elucidate the processes that govern the attractive behavior with atomistic resolution. As an industrially relevant example we study the interaction of negatively charged carboxylate groups of sodium polyacrylate molecules with divalent cationic Ca2+ counterions. Here we show that Ca2+ ions initially associate with single chains of polyacrylates and strongly influence sodium ion distribution; shielded polyanions approach each other and eventually "stick" together (precipitate), contrary to the assumption that precipitation is initially induced by intermolecular Ca2+ bridging.  相似文献   

13.
A new and simple electric charge interaction mechanism has been proposed to explain the behaviour of the tilt angle of liquid crystals by rubbing. The mechanism of the molecular alignment is elucidated based on the effect of a static electric charge on a substrate surface treated by rubbing. An electric field which is dependent on the topology of a substrate surface allows a planar orientation of molecules with positive dielectric anisotropy. With increasing rubbing strength, the tilt angle varies slowly. The director of molecules with negative dielectric anisotropy is uniform and has a tilt angle determined by the molecular permanent dipole direction. The air-liquid crystal interface case is also considered. This model enables us to give a unified picture of the molecular alignment mechanism.  相似文献   

14.
Charge transport in organic semiconductors is strongly dependent on their molecular packing modes in the solid state. Therefore, understanding the relationship between molecular packing and charge transport is imperative, both experimentally and theoretically. However, so far, the fundamental effects of solid‐state packing and molecular interactions (e.g. N? H ??? π) on charge transport need further elucidation. Herein, indolo[3,2‐b]carbazole (ICZ) and a derivative thereof are used as examples to approach this scientific target. An interesting insight obtained thereby is that N? H ??? π interactions among ICZ molecules facilitate charge transport for higher mobility. Subtle changes in the of N? H ??? π interactions can significantly influence both the molecular packing and the charge‐transport properties. Therefore, a method for exploiting intermolecular N? H ??? π interactions would yield novel molecular systems with designable characteristics.  相似文献   

15.
Electron transport through single molecules or collections of molecules oriented in parallel can occur by several mechanisms, including coherent tunneling, activated transfer between potential wells, various “hopping” modes, etc. Given suitable energy levels and sufficiently long charge transport times, reduction or oxidation with accompanying nuclear reorganization can occur to generate “polarons”, that is, localized redox centers in the molecule or monolayer. Redox events in molecular junctions are amenable to spectroscopic monitoring in working devices, and can have major effects on the electronic behavior of the junction. Several examples are presented, along with a possible application to molecular memory.  相似文献   

16.
Since the late seventies, the search for new molecular receptors has been constant in perfecting the affinity and selectivity of recognition in different media. At present, a renewed interest in (host:guest) chemistry focuses on the molecular detection of specific targets such as biological, pollutant, toxic or explosive species. This review of triphenylene-based receptors outlines their recent contribution to molecular recognition. Two main structural approaches were investigated to transform a simple triphenylene moiety into a host for neutral aromatic compounds or cations, by tailoring multivalent molecules provided with or without a flatten cavity. The properties of different receptors are presented along with the latest synthetic methods to prepare high-value triphenylenes and the perspectives in the field of sensing. In addition, the role of functionalized triphenylenes in extended (host:guest) systems is illustrated by the main examples of discotic liquid crystals and porous coordination polymers involving this polyaromatic compound.  相似文献   

17.
In this contribution, we report studies in ultrafast electron diffraction (UED), with the aim of exploring new directions. The main focus is on the determination of complex structures and their dynamics with spatial and temporal resolutions sufficient to give an atomic-scale picture for the evolution in chemical or biological change. We also provide the theoretical framework for UED, and compare the experimental findings of UED to those predicted by density functional and charge density calculations. Selected applications are given in order to highlight phenomena related to concepts such as bifurcation of trajectories in dynamics, far-from-equilibrium coherent structures, and conformational robustness in biological structures. For the former two cases, we consider chemical systems, and, for the latter, we examine proteins of 200 atoms (angiotensin I) or more.  相似文献   

18.
A simple electrostatic model of solvation is presented which allows the interaction with solvent to be included systematically within semiempirical SCF calculations. Solvent effects are incorporated into the Hamiltonian for a solute molecule through a series of imaginary particles, solvatons, which represent the oriented solvent distribution around the solute.The proposed model is based on an algorithm for approximating the enthalpy of solvation of each atomic center from its charge in the molecular system and the experimental hydration enthalpies of its various ions. The calculated atomic solvation energy of one center is then modified to include the interaction with other charged atomic centers in the molecule. The method, developed here for the MINDO/3 approximation, has been applied to the calculation of the aqueous dissociation of a series of hydrides. In general, it leads to fairly accurate solvation enthalpies andpK a values when applied to systems with fixed molecular geometries. A general discussion of the problems associated with the development of a solvation model within a semiempirical framework is also presented.  相似文献   

19.
A general approach to revealing correlations between the structure of molecules and their reactivity in fragmentation processes under electron impact conditions based on the use of generalized structural and mass spectral characteristics is suggested. The characteristics were obtained using information theory, molecular graphs, and absolute reaction rates. Information topological indices of molecular graphs were used as generalized structural characteristics of molecules. They are a quantitative measure of the structural complexity of molecules and are expressed in information units. The gas-phase process of fragmentation of molecules under electron impact was used as a general reaction series for all volatiles. In terms of information theory, the mass spectrum represents the distribution of probabilities of the formation of ions of each type, and the information entropy of this distribution appears to be an integral characteristic of the reactivity of a molecule during fragmentation under electron impact in the gas phase. Using organic and organometallic compounds of several classes (ferrocene derivatives, arylsilanes, aromatic azo compounds,etc.) as examples, linear correlations between the information indices of the mass spectra and the information topological indices of the appropriate molecular graphs or electronic parameters of molecules have been found, which testifies that the approach suggested is adequate.Translated fromIzvestiya Akodemii Nouk. Seriya Khimicheskaya, No. 11, pp. 2683–2688, November, 1996.  相似文献   

20.
Invited for this month′s cover picture is the group of Thomas Wirth at Cardiff University (UK). The cover picture shows two structures of triptycenes. In each of these molecules all three aromatic rings are different with the rigid structure of the molecules making them chiral. The two sp3-carbons shown in red and green are the stereocentres with defined configuration. These molecules contain the crucial iodine functionality which are utilised to generate hypervalent iodine(III)-catalysts in situ . The authors acknowledge Dr. Yu Wang for the creation of the cover image. Read the full text of their Research Article at 10.1002/open.202200145 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号