首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main lesion produced in DNA by UV-C irradiation of spores of Bacillus subtilis is 5-thyminyl-5,6-dihydrothymine (spore photoproduct [SP]). In contrast, cyclobutane pyrimidine dimers (CPD) and pyrimidine (6-4) pyrimidone photoproducts (6-4PP) are the main photolesions in other cell types. The novel photochemistry of spore DNA is accounted for in part by its reduced hydration, but largely by the saturation of spore DNA with alpha/beta-type small, acid-soluble spore proteins (SASP). Using high-performance liquid chromatography-mass spectrometry analysis of the photoproducts, we showed that in wild-type B. subtilis spores (1) UV-C irradiation generates almost exclusively SP with little if any CPD and 6-4PP; (2) the SP generated is approximately 99% of the intrastrand derivative, but approximately 1% is in the interstrand form; and (3) there is no detectable formation of the SP analog between adjacent C and T residues. UV-C irradiation of spores lacking the majority of their alpha/beta-type SASP gave less SP than with wild-type spores and significant levels of CPD and 6-4PP. The binding of an alpha/beta-type SASP to isolated DNA either in dry films or in aqueous solution led to a large decrease in the yield of CPD and 6-4PP, and a concomitant increase in the yield of SP, although levels of interstrand photoproducts were extremely low.  相似文献   

2.
Abstract— The formation of cyclobutane pyrimidine dimers and UV light-induced (6-4) products was examined under conditions of triplet state photosensitization. DNA fragments of defined sequence were irradiated with 313 nm light in the presence of either acetone qr silver ion. UV irradiation in the presence of both silver ion and acetone enhanced the formation of TT cyclobutane dimers, yet no (6-4) photoproducts were formed at appreciable levels. When photoproduct formation was also measured in pyrimidine dinucleotides, only cyclobutane dimers were formed when the dinucleotides were exposed to 313 nm light in the presence of photosensitizer. The relative distribution of each type of cyclobutane dimer formed was compared for DNA fragments that were irradiated with 254, 313, or 313 nm UV light in the presence of acetone. The dimer distribution for DNA irradiated with 254 and 313 nm UV light were very similar, whereas the distribution for DNA irradiated with 313 nm light in the presence of acetone favored TT dimers. Alkaline labile lesions at guanine sites were also seen when DNA was irradiated with 313 nm light in the presence of acetone.  相似文献   

3.
The radiation damage observed when UV and ionizing radiations react on biological objects is caused in many cases by changes in the nucleic acids. Exposure of these compounds to UV radiation in vitro and in vivo leads, inter alia, to dimerization of the pyrimidine bases with formation of cyclobutane derivatives, and to addition of water to the 5,6-double bond of the pyrimidine bases to form derivatives of the 6-hydroxyhydropyrimidine system. The structure of the irradiation products has been established. The dimerization prevents the reduplication of the DNA, and the addition of water appears to be the cause of UV mutations. Ionizing radiation in aqueous solution results e.g. in addition of H and/or HO radicals to the 5,6-double bond of the pyrimidine bases and cleavage of the imidazole ring of the purine bases. The mutations caused by ionizing radiation are probably also due, in part, to the formation of 6-hydroxydihydropyrimidine derivatives.  相似文献   

4.
UV irradiation induces DNA lesions particularly at dipyrimidine sites. Using time-resolved UV pump (250 nm) and mid-IR probe spectroscopy the triplet pathway of cyclobutane pyrimidine dimer (CPD) formation within TpC and CpT sequences was studied. The triplet state is initially localized at the thymine base but decays with 30 ns under formation of a biradical state extending over both bases of the dipyrimidine. Subsequently this state either decays back to the electronic ground state on the 100 ns time scale or forms a cyclobutane pyrimidine dimer lesion (CPD). Stationary IR spectroscopy and triplet sensitization via 2′-methoxyacetophenone (2-M) in the UVA range shows that the lesions are formed with an efficiency of approximately 1.5 %. Deamination converts the cytosine moiety of the CPD lesions on the time scale of 10 hours into uracil which gives CPD(UpT) and CPD(TpU) lesions in which the coding potential of the initial cytosine base is vanished.  相似文献   

5.
Biological consequences of cyclobutane pyrimidine dimers.   总被引:2,自引:0,他引:2  
In the skin many molecules may absorb ultraviolet (UV) radiation upon exposure. In particular, cellular DNA strongly absorbs shorter wavelength solar UV radiation, resulting in various types of DNA damage. Among the DNA photoproducts produced the cyclobutane pyrimidine dimers (CPDs) are predominant. Although these lesions are efficiently repaired in the skin, this CPD formation results in various acute effects (erythema, inflammatory responses), transient effects (suppression of immune function), and chronic effects (mutation induction and skin cancer). The relationships between the presence of CPD in skin cells and the subsequent biological consequences are the subject of the present review.  相似文献   

6.
DNA光复活作用机理的研究进展*   总被引:11,自引:0,他引:11  
宋钦华  郭庆祥 《化学进展》2001,13(6):428-435
"环丁烷型嘧啶二聚体(Pyr< > Pyr) 是太阳光中紫外线造成DNA 损伤的主要光化学产物。DNA 光复活酶(或称光解酶) 能够利用可见光裂解二聚体的环丁烷环而修复DNA。本文对DNA 光复活过程中的光解酶对Pyr< > Pyr 的识别和光催化Pyr< > Pyr 裂解反应进行了综述, 介绍了DNA 光解酶的结构、DNA 的主要UV 光化学产物。较详尽地评述了国际上在光解酶催化二聚体裂解的途径以及模型研究方面的最新进展, 并预测了该领域的发展前景。  相似文献   

7.
The formation of cyclobutane pyrimidine dimers between adjacent thymines by UV radiation is thought to be the first event in a cascade leading to skin cancer. Recent studies showed that thymine dimers are fully formed within 1 ps of UV irradiation, suggesting that the conformation at the moment of excitation is the determining factor in whether a given base pair dimerizes. MD simulations on the 50 ns time scale are used to study the populations of reactive conformers that exist at any given time in T18 single-strand DNA. Trajectory analysis shows that only a small percentage of the conformations fulfill distance and dihedral requirements for thymine dimerization, in line with the experimentally observed quantum yield of 3%. Plots of the pairwise interactions in the structures predict hot spots of DNA damage where dimerization in the ssT18 is predicted to be most favored. The importance of hairpin formation by intra-strand base pairing for distinguishing reactive and unreactive base pairs is discussed in detail. The data presented thus explain the structural origin of the results from the ultrafast studies of thymine dimer formation.  相似文献   

8.
Six new monoclonal antibodies (TDM-2, TDM-3, 64M-2, 64M-3, 64M-4 and 64M-5) specific for ultraviolet (UV) induced DNA damage have been established. In the antibody characterization experiments, two TDM antibodies were found to show a dose-dependent binding to UV-irradiated DNA (UV-DNA), decrease of binding to UV-DNA after cyclobutane pyrimidine dimer photoreactivation, binding to DNA containing cyclobutane thymine dimers, and unchanged binding to UV-DNA after photoisomerization of (6-4)photoproducts to Dewar photoproducts. These results indicated that the epitope of TDM monoclonal antibodies was the cyclobutane pyrimidine dimer in DNA. On the other hand, four 64M antibodies were found to show a dose-dependent binding to UV-DNA, unchanged binding to UV-DNA after cyclobutane pyrimidine dimer photoreactivation, undetectable binding to DNA containing thymine dimers, and decrease of binding to UV-DNA after photoisomerization of (6-4)photoproducts. These results indicated that the epitope of 64M antibodies was the (6-4)photoproduct in DNA. This is the first report of the simultaneous establishment of monoclonal antibodies against the two different types of photolesions from the same mouse. By using these monoclonal antibodies, we have succeeded in measuring both cyclobutane pyrimidine dimers and (6-4)photoproducts in the DNA from human primary cells irradiated with physiological UV doses.  相似文献   

9.
The survey focuses on recent aspects of photochemical reactions to cellular DNA that are implicated through the predominant formation of mostly bipyrimidine photoproducts in deleterious effects of human exposure to sunlight. Recent developments in analytical methods have allowed accurate and quantitative measurements of the main DNA photoproducts in cells and human skin. Highly mutagenic CC and CT bipyrimidine photoproducts, including cyclobutane pyrimidine dimers and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs) are generated in low yields with respect to TT and TC photoproducts. Another striking finding deals with the formation of Dewar valence isomers, the third class of bipyrimidine photoproducts that is accounted for by UVA-mediated isomerization of initially UVB generated 6-4PPs. Cyclobutadithymine (T<>T) has been unambiguously shown to be involved in the genotoxicity of UVA radiation. Thus, T<>T is formed in UVA-irradiated cellular DNA according to a direct excitation mechanism with a higher efficiency than oxidatively generated DNA damage that arises mostly through the Type II photosensitization mechanism. C<>C and C<>T are repaired at rates intermediate between those of T<>T and 6-4TT. Evidence has been also provided for the occurrence of photosensitized reactions mediated by exogenous agents that act either in an independent way or through photodynamic effects.  相似文献   

10.
Abstract— Changes in UV sensitivity during spore germination of Bacillus subtilis mutants possessing various defects in DNA repair capacities were analysed in order to estimate the yield of the DNA photoproducts at the transient, UV resistant stage which occurs in the process of germination. It was concluded that the yield of the spore-specific photoproduct (5-thyminyl-5,6-dihydrothymine, TDHT) at the transient stage was only about 3% of that in dormant spores and the yield of the cyclobutane-type pyrimidine dimers at this stage was about 10% (or less) of that in germinated spores.  相似文献   

11.
The UV photoreactivity of different pyrimidine DNA/RNA nucleobases along the singlet manifold leading to the formation of cyclobutane pyrimidine dimers has been studied by using the CASPT2 level of theory. The initially irradiated singlet state promotes the formation of excimers between pairs of properly oriented nucleobases through the overlap between the ?? structures of two stacked nucleobases. The system evolves then to the formation of cyclobutane pyrimidine dimers via a shearing-type conical intersection activating a [2?+?2] photocycloaddition mechanism. The relative location of stable excimer conformations or alternative decay channels with respect to the reactive degeneracy region explains the differences in the photoproduction efficiency observed in the experiments for different nucleobases sequences. A comparative analysis of the main structural parameters and energetic profiles in the singlet manifold is carried out for thymine, uracil, cytosine, and 5-methylcytosine homodimers. Thymine and uracil dimers display the most favorable paths, in contrast to cytosine. Methylation of the nucleobases seems to increase the probability for dimerization.  相似文献   

12.
Abstract— The expression of UV damage-specific DNA-binding proteins was examined in various phylogenetically distant species with differing DNA repair phenotypes. Two distinct constitutive DNA-binding activities, one specific for cyclobutane pyrimidine dimers and the other for non-cyclobutane dimer photoproducts, were detected. The expression of these binding activity was found to be variable throughout the animal kingdom: cold-blooded vertebrastes show a constitutive cyclobutance dimer-binding activity excusively, and primates reveal only non-cyclobutane expression (rather than the constitutive presence)of these UV damage-specific DNA-binding activities after UV traeatment correlate with the cell's capacity for DNA repair. In addition, cyclobutane pyrimidine dimer-binding activities could be detected only in cells with eestablished photoreactivating activity  相似文献   

13.
Stratospheric ozone depletion may result in increased solar UV-B radiation to the ocean's upper layers and may cause deleterious effects on marine organisms. The primary UV-B damage induced in biological systems is to DNA. While physical measurements of solar UV-B penetration into the sea have been made, the effective depth and magnitude of actual DNA damage have not been determined. In the experiments reported here, UV-B-induced photoproducts (cyclobutane pyrimidine dimers) have been quantified in DNA molecules exposed to solar UV at the surface and at various depths in clear, tropical marine waters off Lee Stocking Island (23 degrees 45' N, 76 degrees 0.7' W), Exuma Cays, Bahamas. (14C)thymidine-labeled DNA or unlabeled bacteriophage phi X174 DNA was placed in specially designed quartz tubes at various depths for up to five days. Following exposure, DNA samples were removed to the laboratory where UV-B-induced pyrimidine dimers were quantified using a radiochromatographic assay, and bacteriophage DNA inactivation by solar UV-B was assayed by plaque formation in spheroplasts of Escherichia coli. Pyrimidine dimer induction was linear with time but the accumulation of dimers in DNA with time varied greatly with depth. Attenuation of dimer formation with depth of water was exponential. DNA at 3 m depth had only 17% of the pyrimidine dimers found at the surface. Bacteriophage phi X174 DNA, while reduced 96% in plaque-forming ability by a one day exposure to solar UV at the surface of the water, showed no effect on plaque formation after a similar exposure at 3 m. The data collected at the water's surface showed a "surface-enhanced dose" in that DNA damages at the real surface were greater than at the imaginary surface, which was obtained by extrapolating the data at depth to the surface. These results show the sensitivity of both the biochemical (dimers) and biological (phage plaques) DNA dosimeters. DNA dosimeters offer a sensitive, convenient and relatively inexpensive monitoring system, having both biochemical and biological endpoints for monitoring the biologically effective UV-B flux in the marine environment. Unlike physical dosimeters, DNA dosimeters do not have to be adjusted for biological effectiveness since they are sensitive only to DNA-mediated biologically effective UV-B radiation. Results of pyrimidine dimer induction in DNA by solar UV accurately predicted UV doses to the phage DNA.  相似文献   

14.
Mammalian skin is vulnerable to the photocarcinogenic and photoaging effects of solar UV radiation and defends itself using a variety of photoprotective responses including epidermal thickening, tanning and the induction of repair and antiradical systems. We treated Skh-1 albino hairless mice for 60 days with ultraviolet-A (UVA) or ultraviolet-B (UVB) radiation and measured the frequency of cyclobutane pyrimidine dimers and pyrimidine(6-4)pyrimidone photoproducts induced by a single acute sunburn dose of UVB at different stages of the chronic treatment. We found that both UVA and UVB exposure produced a photoprotective response in the dermis and epidermis and that the degree of photoproduct attenuation was dependent on dose, wavelength and the type of damage induced. Although epidermal thickening was important, our data suggest that UV protective compounds other than melanin may be involved in mitigating the damaging effects of sunlight in the skin.  相似文献   

15.
The reaction pathways for thermal and photochemical formation of cyclobutane pyrimidine dimers in DNA are explored using density functional theory techniques. Although it is found that the thermal [2 + 2] cycloadditions of thymine + thymine (T + T --> T x T), cytosine + cytosine (C + C --> C x C) and cytosine + thymine (C + T --> C x T) all are similarly unfavorable in terms of energy barriers and reaction energies, the excited-state energy curves associated with the corresponding photochemical cycloadditions display differences that--in line with experimental findings--unanimously point to the predominance of T x T in UV-irradiated DNA. It is shown that the photocycloaddition of thymines is facilitated by the fact that the S1 state of the corresponding reactant complex lies comparatively high in energy. Moreover, at a nuclear configuration coinciding with the ground-state transition structure, the excited-state energy curve displays an absolute minimum only for the T + T system. Finally, the T + T system is also associated with the most favorable excited-state energy barriers and has the smallest S2-S0 energy gap at the ground-state transition structure.  相似文献   

16.
Exposure to solar UV radiation gives rise to mutations that may lead to skin cancer of human being. Series of experiments were carried out in order to reveal activation energy distribution of DNA mutation caused by UV radiation. The T-rich oligonucleotides were exposed to UV radiation with increasing intensity for different durations. Photoproducts of T-rich oligonucleotide were investigated using ion-pair reversed-phase high-performance liquid chromatography/tandem electrospray ionization mass spectrometry (IP-RP-HPLC/ESI-MS) at room temperature. Two photoproducts of T-rich oligonucleotide were cis-syn cyclobutane pyrimidine dimmer (T[c,s]T) and the pyrimidine(6,4)pyrimidone product (T[6,4]T). Activation energy distribution of DNA mutation was calculated using a commercial kinetics analysis programs by Robert L. Braun and Alan K. Burnham , Lawrance Livermore International Laboratory (version 2.4.1). To use the software for deriving the kinetics parameters, the factor T (temperature) in the software was substituted with k1R, in which k1 is a factor, R is radiation intensity. The activation energy derived ranges from 55 to 110 kJ mol(-1). By the same software, those kinetics parameters were extrapolated to natural UV radiation process to predict DNA damage degree without the DNA repair process.  相似文献   

17.
Ultraviolet radiation is an efficient inactivation method for a broad range of bacteria, viruses and parasites. Inactivation of microorganisms by UV-B and UV-C radiation is driven through modifications in their genomic DNA, being the most stable DNA-lesions different kinds of pyrimidine dimers (PDs) (e.g., cyclobutane pyrimidine dimers (CPDs) and other photoproducts). Taking into account that these modifications inhibit the DNA polymerization in vivo as well as in vitro, in the present work the usefulness of the REP-PCR assay to detect UV-induced changes in the Escherichia coli DNA was evaluated. In vitro amplification of DNA extracted at different times after UV treatment showed a disappearance of amplicons of higher size as time of treatment increases. When the bacteria were let to progress through their dark repair process, modifications in the electrophoretic patterns by REP-PCR were observed again. Amplified bacterial DNA tended to recover the profile showed at the beginning of treatment. In addition, the reappearance of bands of higher molecular size was associated to an increase in their signal intensity probably due to a higher amplification rate. Results of REP-PCR were correlated to the colony-forming ability of E. coli. It was concluded that REP-PCR appears as a rapid, robust, useful complementary methodology to monitor the impact of UV irradiation--at a molecular level--on the inactivation and the mechanisms of repair, applicable on a broad spectrum of microorganisms.  相似文献   

18.
Photochemistry of nucleic acids in cells.   总被引:6,自引:0,他引:6  
A survey of the recent aspects of the main photoreactions induced by far-UV radiation in cellular DNA is reported. This mostly includes the formation of cyclobutadipyrimidines, pyrimidine(6-4)pyrimidone photoadducts and related Dewar valence isomers in various eukaryotic and prokaryotic cells, as monitored by using either specific or more general assays. Information is also provided on mechanistic aspects regarding the formation of 5,6-dihydro-5-(alpha-thyminyl) thymine, the so-called "spore photoproduct" within far-UV-irradiated bacterial spores. The second major topic of the review deals with the effects of near-UV radiation and visible light on cellular DNA which are mostly mediated by photosensitizers. The main photoreactions of furocoumarins with DNA, one major class of photosensitizers used in the phototherapy of skin diseases, involve a [2 + 2] cycloaddition to the thymine bases according to an oxygen-independent mechanism. In contrast a second type of photosensitized reaction which appears to play a major role in the genotoxic effects of both near-UV and visible light requires the presence of oxygen. The photodynamic effects which are mediated by either still unidentified endogenous photosensitizers or defined exogenous photosensitizers lead to the formation of a wide spectrum of DNA modifications including base damage, oligonucleotide strand breaks and DNA-protein cross-links.  相似文献   

19.
Sunlight exposure of the eye leads to pathologies including photokeratitis, cortical cataracts, pterygium, actinic conjunctivitis and age‐related macular degeneration. It is well established that exposure to ultraviolet (UV) radiations leads to DNA damage, mainly cyclobutane pyrimidine dimers (CPDs). CPD formation is the principal factor involved in skin cancer. However, the exact mechanism by which sunlight induces ocular pathologies is not well understood. To shed light on this issue, we quantified the CPD formation onto DNA of rabbit ocular cells following UVB exposure. We found that CPDs were induced only in the structures of the ocular anterior chamber (cornea, iris and lens) and were more concentrated in the corneal epithelium. Residual UVB that pass through the cornea are completely absorbed by the anterior layers of the iris. CPDs were also detected in the central portion of the lens that is not protected by the iris (pupil). By determining the UV‐induced DNA damage formation in eyes, we showed that anterior ocular structures are a reliable physical barrier that protects the subjacent structures from the toxic effects of UV. Although the corneal epithelium is the structure where most of the CPDs were detected, no cancer is related to solar exposure.  相似文献   

20.
In all organisms, genetic information is stored in DNA and RNA. Both of these macromolecules are damaged by many exogenous and endogenous events, with UV irradiation being one of the major sources of damage. The major photolesions formed are the cyclobutane pyrimidine dimers (CPD), pyrimidine-pyrimidone-(6-4)-photoproducts, Dewar valence isomers and, for dehydrated spore DNA, 5-(α-thyminyl)-5,6-dihydrothymine (SP). In order to be able to investigate how nature's repair and tolerance mechanisms protect the integrity of genetic information, oligonucleotides containing sequence and site-specific UV lesions are essential. This tutorial review provides an overview of synthetic procedures by which these oligonucleotides can be generated, either through phosphoramidite chemistry or direct irradiation of DNA. Moreover, a brief summary on their usage in analysing repair and tolerance processes as well as their biological effects is provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号