首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The macrocycle-mediated fluxes of several alkali metal cations have been determined in a H2O-CH2Cl2-H2O liquid membrane system. Water-insoluble proton-ionizable macrocycles of the pyridono type were used. The proton-ionizable feature allows the coupling of cation transport to reverse H+ transport. This feature offers promise for the effective separation and/or concentration of alkali metal ions with the metal transport being driven by a pH gradient. A counter anion in the source phase is not co-transported. The desired separation of a particular metal ion involves its selective complexation with the macrocycle, subsequent extraction from the aqueous phase to the organic phase, and exchange for H+ at the organic phase-receiving phase interface. Factors affecting transport which were studied include ring size, source phase pH, and receiving phase pH. Lithium was transported at a rate higher than that of the other alkali metals in both single and competitive systems using a 15-crown-5 pyridono carrier.  相似文献   

2.
Oxygen reduction and water oxidation are two key processes in fuel cell applications. The oxidation of water to dioxygen is a 4 H+/4 e? process, while oxygen can be fully reduced to water by a 4 e?/4 H+ process or partially reduced by fewer electrons to reactive oxygen species such as H2O2 and O2?. We demonstrate that a novel manganese corrole complex behaves as a bifunctional catalyst for both the electrocatalytic generation of dioxygen as well as the reduction of dioxygen in aqueous media. Furthermore, our combined kinetic, spectroscopic, and electrochemical study of manganese corroles adsorbed on different electrode materials (down to a submolecular level) reveals mechanistic details of the oxygen evolution and reduction processes.  相似文献   

3.
H2O2 is a versatile chemical and can be generated by the oxygen reduction reaction (ORR) in proton donor solution in molecular solvents or room temperature ionic liquids (IL). We investigated this reaction at interfaces formed by eleven hydrophobic ILs and acidic aqueous solution as a proton source with decamethylferrocene (DMFc) as an electron donor. H2O2 is generated in colorimetrically detectable amounts in biphasic systems formed by alkyl imidazolium hexafluorophosphate or tetraalkylammonium bis(trifluoromethylsulfonyl)imide ionic liquids. H2O2 fluxes were estimated close to liquid|liquid interface by scanning electrochemical microscopy (SECM). Contrary to the interfaces formed by hydrophobic electrolyte solution in a molecular solvent, H2O2 generation is followed by cation expulsion to the aqueous phase. Weak correlation between the H2O2 flux and the difference between DMFc/DMFc+ redox potential and 2 electron ORR standard potential indicates kinetic control of the reaction.  相似文献   

4.
Designing highly efficient and stable electrode-electrolyte interface for hydrogen peroxide (H2O2) electrosynthesis remains challenging. Inhibiting the competitive side reaction, 4 e oxygen reduction to H2O, is essential for highly selective H2O2 electrosynthesis. Instead of hindering excessive hydrogenation of H2O2 via catalyst modification, we discover that adding a hydrogen-bond acceptor, dimethyl sulfoxide (DMSO), to the KOH electrolyte enables simultaneous improvement of the selectivity and activity of H2O2 electrosynthesis. Spectral characterization and molecular simulation confirm that the formation of hydrogen bonds between DMSO and water molecules at the electrode-electrolyte interface can reduce the activity of water dissociation into active H* species. The suitable H* supply environment hinders excessive hydrogenation of the oxygen reduction reaction (ORR), thus improving the selectivity of 2 e ORR and achieving over 90 % selectivity of H2O2. This work highlights the importance of regulating the interfacial hydrogen-bond environment by organic molecules as a means of boosting electrochemical performance in aqueous electrosynthesis and beyond.  相似文献   

5.
Scanning electrochemical microscopy (SECM) was used to monitor in situ hydrogen peroxide (H2O2) produced at a polarized water/1,2-dichloroethane (DCE) interface. The water/DCE interface was formed between a DCE droplet containing decamethylferrocene (DMFc) supported on a solid electrode and an acidic aqueous solution. H2O2 was generated by reducing oxygen with DMFc at the water/DCE interface, and was detected with a SECM tip positioned in the vicinity of the interface using a substrate generation/tip collection mode. This work shows unambiguously how the H2O2 generation depends on the polarization of the liquid/liquid interface, and how proton-coupled electron transfer reactions can be controlled at liquid/liquid interfaces.  相似文献   

6.
Anthraquinone (AQ) redox mediators are introduced to metal‐free organic dye sensitized photo‐electrochemical cells (DSPECs) for the generation of H2O2. Instead of directly reducing O2 to produce H2O2, visible‐light‐driven AQ reduction occurs in the DSPEC and the following autooxidation with O2 allows H2O2 accumulation and AQ regeneration. In an aqueous electrolyte, under 1 sun conditions, a water‐soluble AQ salt is employed with the highest photocurrent of up to 0.4 mA cm?2 and near‐quantitative faradaic efficiency for producing H2O2. In a non‐aqueous electrolyte, under 1 sun illumination, an organic‐soluble AQ is applied and the photocurrent reaches 1.8 mA cm?2 with faradaic efficiency up to 95 % for H2O2 production. This AQ‐relay DSPEC exhibits the highest photocurrent so far in non‐aqueous electrolytes for H2O2 production and excellent acid stability in aqueous electrolytes, thus providing a practical and efficient strategy for visible‐light‐driven H2O2 production.  相似文献   

7.
Single nanoparticle (NP) electrochemistry detection at a micro liquid|liquid interface (LLI) is exploited using the catalyzed oxygen reduction reaction (ORR). In this way, current spikes reminiscent of nanoimpacts were recorded, which corresponded to electrocatalytic enhancement of the ORR by Pt NPs. The nature of the LLI allows exploration of new phenomena in single NP electrochemistry. The recorded impacts result from a bipolar reaction occurring at the Pt NP straddling the LLI. O2 reduction takes place in the aqueous phase, while ferrocene hydride (Fc‐H+; a complex generated upon facilitated interfacial proton transfer by Fc) is oxidized in the organic phase. Ultimately, the role of reactant partitioning, NP bouncing, or the ability of NPs to induce Marangoni effects, is demonstrated.  相似文献   

8.
Effect of the ion composition of aqueous solutions on the oxygen absorption kinetics in a system constituted by a gas (air) and a liquid (aqueous solution) in the presence of microencapsulated quartz particles activating the mass transfer in the liquid phase was studied. It was found that ions with positive hydration cause a substantial decrease in the O2 mass-transfer enhancement factor, whereas ions with negative hydration lead to its increase under the same conditions. It is shown that the effect of ions on the rate of oxygen absorption by aqueous electrolyte solutions can be prognosticated on the basis of data on the influence of these ions on the structure and viscosity of water. The results of the study can serve as a basis for varying the rate of heterogeneous reactions in gas-liquid systems, whose rate is limited by the mass transfer of oxygen into aqueous media, by purposeful control over their ion composition.  相似文献   

9.
The changes of the overpotential of oxygen evolution caused by the change of concentration or activity of water and by the presence of alkali metal ions were investigated in aqueous HClO4, H2SO4 and H3PO4 solutions at Pt electrodes.The water content of the solutions was changed by dissolved ?-caprolactam. It was established that the overpotential of electrochemical oxygen evolution at constant current density increases with decreasing water activity and the relation between overpotential and activity of water is rather different in the three acids investigated. The current—voltage curves correspond to the Tafel equation partially with two sections of differing slope.The effect of concentration of alkali metal ions on the overpotential was studied as a function of the water activity. The sequence of the overvoltage increasing effect of the different metal ions is dependent on the activity of the water and on the concentration of the ions.The results indicate that the change of the liquid structure of the water caused by the presence of the different ions and ?-caprolactam can exert an influence on the velocity of oxygen evolution.  相似文献   

10.
Anion transfer processes at a liquid|liquid interface were studied with an interdigitated gold band array electrode. The organic phase, 4‐(3‐phenylpropyl)‐pyridine containing Co(II)phthalocyanine, was immobilised as random droplets at the electrode surface and then immersed into aqueous electrolyte. Oxidation of Co(II)phthalocyanine at the generator electrode was shown to be associated with anion transfer from the aqueous into the organic phase. The corresponding back reduction at the collector electrode with anion expulsion was delayed by the anion/cation diffusion time across the interelectrode gap. A working curve based on a finite difference numerical simulation model was employed to estimate the apparent diffusion coefficients for anions in the organic phase (PF6?4?3?). Potential applications in ion analysis are discussed.  相似文献   

11.
Cation exchange was studied on alkylammonium intercalated H2Ti3O7 in comparison with H2Ti3O7 itself. Alkylammonium exchanged for proton in advance made it possible for alkali and alkaline earth metal ions to be taken up into H2Ti3O7 in chloride solution. Only alkylammonium was exchanged with hydrated alkali and alkaline earth metal ions. In hydroxide solution, proton was exchanged with alkali metal ions as well as alkylammonium ion. Dependence on pH and preference on ion exchange were affected by the previous uptake of alkylammonium into H2Ti3O7.  相似文献   

12.
Singlet oxygen (1O2) causes a major fraction of the parasitic chemistry during the cycling of non‐aqueous alkali metal‐O2 batteries and also contributes to interfacial reactivity of transition‐metal oxide intercalation compounds. We introduce DABCOnium, the mono alkylated form of 1,4‐diazabicyclo[2.2.2]octane (DABCO), as an efficient 1O2 quencher with an unusually high oxidative stability of ca. 4.2 V vs. Li/Li+. Previous quenchers are strongly Lewis basic amines with too low oxidative stability. DABCOnium is an ionic liquid, non‐volatile, highly soluble in the electrolyte, stable against superoxide and peroxide, and compatible with lithium metal. The electrochemical stability covers the required range for metal–O2 batteries and greatly reduces 1O2 related parasitic chemistry as demonstrated for the Li–O2 cell.  相似文献   

13.
At different phthalocyanines and related macrocycles it is shown that one-step, multi-electron transfer and one-step, multi-change of oxidation states occur. At first, the catalytic oxidations of thiols and sulfide in the presence of different Co(II)phthalocyanines are discussed. Thiolates are oxidized to disulfides via a two-electron transfer whereas the reduction of O2 occurs via a two- or four-electron transfer to H2O2 or H2O. Zn(II) and Al(III)phthalocyanines are efficient sensitizers for the conversion of triplet to singlet dioxygen under illumination with visible light. In the presence of thiolates or sulfides an efficient photo-oxidation to sulfonic acids or sulfate is observed. The oxidation state of sulfur changes from ?2 to +4 or +6, respectively. This process of singlet oxygen reactions finds application in the photodynamic therapy of cancer. The unsubstituted zinc(II)-phthalocyanine as p-type molecular semiconductor can efficienfly reduce O2 in photoelectrochemical experiments whereas zinc(II)phthalocyanines with electronwithdrawing groups as n-type conductors are active in the photoelectrochemical oxidation of thiols. All processes include multi-electron transfer. The electrocatalytic reduction of CO2 is investigated at electrodes modified with Co(II)phthalocyanine. In particular, the phthalocyanine in a polyvinylpyridine membrane is active, so the CO2 is reduced to CO by multi-electron transfer. In addition, two photon excitations of a Mg(II)phthalocyanine are presented and some examples are reviewed.  相似文献   

14.
《Electroanalysis》2005,17(11):953-958
An electron transfer reaction between ascorbic acid (H2A) in an aqueous solution and oxidizing agent in an organic solution immiscible with water has been studied by thin‐layer cyclic voltammetry (TLCV) for charge transfer at the interface between two immiscible electrolyte solutions (ITIES). As an antioxidant, H2A provide electrons through the aqueous/organic interface to reduce Fc+ and the procedure has been proved to be a one electron process again. In this work, the first combination of TLCV and scanning electrochemical microscopy (SECM) was achieved and showed a reasonable agreement between the results from the two different approaches. Otherwise, lower concentration ratios Kr of aqueous to organic reactants was adopted, which is given as evidence to the proposed procedure of Barker.  相似文献   

15.
This communication describes a new and relatively general electrochemical approach to the deposition of transition metal hydroxide/oxide nanostructures onto multi-walled carbon nanotubes (MWNTs) based on the precipitation of metal hydroxide/oxide nanostructures onto MWNTs by increasing the local pH values at the electrode/electrolyte interface induced by the proton-consuming electrochemical reduction of hydrogen peroxide (H2O2). The results obtained with cyclic voltammetry, scanning electron microscopy, and X-ray photoelectron spectroscopy of the synthetic nanocomposites substantially suggest the deposition of the metal hydroxides/oxides onto MWNTs induced by the electrochemical reduction of H2O2. This study essentially offers a facile but effective and relatively general electrochemical approach to the synthesis of the nanocomposites consisting of metal hydroxides/oxides and MWNTs.  相似文献   

16.
The reduction of hydrogen ions from a nonbuffered solution (0.5 M NaClO4) on a smooth platinum electrode is studied by recording polarization curves and making numerical calculations. Under a concentration and activation polarization H3O+ undergoes reduction at pH 2–4. At pH < 2, no limiting current of the H3O+ reduction is reached due to the mass transfer intensification caused by gas evolution. At pH > 4, ions H3O+ are spent for the reduction of molecular oxygen.  相似文献   

17.
Facilitated proton transfer may be of potential significance in pharmacokinetic and pharmacodynamic processes. Here, we show that the NSAID piroxicam and its N-and O-methylated derivatives act as ionophores for proton transfer across the H2O/1,2-dichloroethane interface. Investigations by cyclic voltammetry showed that the proton transfer occurs by interfacial protonation of the ionophore. The dissociation constants of the three compounds in the organic phase were calculated by Matsuda's theory. With this particular transfer mechanism, the present study exemplifies how electrochemistry at a liquid/liquid interface can be applied to calculate the fundamental thermodynamic parameters related to the pharmacokinetic behavior of ionic drugs.  相似文献   

18.
Prussian Blue deposited on the electrode surface under certain conditions is known to be a selective electrocatalyst of hydrogen peroxide (H2O2) reduction in the presence of O2. The electrocatalyst was stabilized at cathodic potentials preventing its loss from the electrode surface. Hydrodynamic voltammograms of H2O2 reduction indicated the transfer of two electrons per catalytic cycle. The operational stability of Prussian Blue in H2O2 reduction was highly dependent on the buffer capacity of the supporting electrolyte. Since Prussian Blue is known to be dissolved in alkaline solution, it was confirmed that in neutral aqueous solutions the product of H2O2 electrocatalytic reduction is OH.  相似文献   

19.
Anthraquinone (AQ) redox mediators are introduced to metal-free organic dye sensitized photo-electrochemical cells (DSPECs) for the generation of H2O2. Instead of directly reducing O2 to produce H2O2, visible-light-driven AQ reduction occurs in the DSPEC and the following autooxidation with O2 allows H2O2 accumulation and AQ regeneration. In an aqueous electrolyte, under 1 sun conditions, a water-soluble AQ salt is employed with the highest photocurrent of up to 0.4 mA cm−2 and near-quantitative faradaic efficiency for producing H2O2. In a non-aqueous electrolyte, under 1 sun illumination, an organic-soluble AQ is applied and the photocurrent reaches 1.8 mA cm−2 with faradaic efficiency up to 95 % for H2O2 production. This AQ-relay DSPEC exhibits the highest photocurrent so far in non-aqueous electrolytes for H2O2 production and excellent acid stability in aqueous electrolytes, thus providing a practical and efficient strategy for visible-light-driven H2O2 production.  相似文献   

20.
The facilitated transfer of alkali metal ions (Na+, K+, Rb+, and Cs+) by 25,26,27,28‐tetraethoxycarbonylmethoxy‐thiacalix[4]arene across the water/1,2‐dichloroethane interface was investigated by cyclic voltammetry. The dependence of the half‐wave transfer potential on the metal and ligand concentrations was used to formulate the stoichiometric ratio and to evaluate the association constants of the complexes formed between ionophore and metal ions. While the facilitated transfer of Li+ ion was not observed across the water/1,2‐dichloroethane interface, the facilitated transfers were observed by formation of 1 : 1 (metal:ionophore) complex for Na+, K+, and Rb+ ions except for Cs+ ion. In the case of Cs+ a 1 : 2 (metal:ionophore) complex was obtained from its special electrochemical response to the variation of ligand concentrations in the organic phase. The logarithms of the complex association constants, for facilitated transfer of Na+, K+, Rb+, and Cs+, were estimated as 6.52, 7.75, 7.91 (log β1°), and 8.36 (log β2°), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号