首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Asthenozoospermia (AS) is a common factor of male infertility, and its pathogenesis remains unclear. The purpose of this study was to investigate the differential seminal plasma metabolic pattern in asthenozoospermic men and to identify potential biomarkers in relation to spermatogenic dysfunction using sensitive ultra-high-performance liquid chromatography–tandem quadruple time-of-flight MS (UHPLC–Q-TOF/MS). The samples of seminal plasma from patients with AS (n = 20) and healthy controls (n = 20) were checked and differentiated by UHPLC–Q-TOF/MS. Compared with the control group, the AS group showed a total of nine significantly different metabolites, including increases in creatinine, uric acid, N6-methyladenosine (m6A), uridine, and taurine and decreases in carnitine, nicotinamide, N-acetylputrescine and l -palmitoylcarnitine. By analyzing the correlation among these metabolites and clinical computer-assisted semen analysis reports, we found that m6A is significantly correlated with not only the four decreased metabolites but also with sperm count, motility, and curvilinear velocity. Furthermore, nicotinamide was shown to correlate with other identified metabolites, indicating its important role in the metabolic pathway of AS. Current results implied that sensitive untargeted seminal plasma metabolomics could identify distinct metabolic patterns of AS and would help clinicians by offering novel cues for discovering the pathogenesis of male infertility.  相似文献   

2.
In this study, we focused on studying the changes in urine metabolites in hyperlipidemic rats using ultra-performance liquid chromatography coupled with quadrupole time-of-fight mass spectrometry (UPLC–Q-TOF/MS) and metabolomics, as well as the effect of Citri Reticulatae Chachiensis Pericarpium (CRCP) on hyperlipidemia. These urine samples were examined by UPLC–Q-TOF/MS to obtain MS data. The MS data were analyzed by principal component analysis and partial least squares-discriminant analysis to identify the differential metabolites. CRCP reduced the body weight and levels of triglycerides, total cholesterol and low-density lipoprotein cholesterol and abnormally decreased high-density lipoprotein cholesterol in hyperlipidemic rats, which were significantly raised by a high-fat diet. Twenty-seven potential biomarkers were identified within the complex sample matrix of urine. Fourteen biomarkers increased in the hyperlipidemia rats compared with normal rats. Meanwhile, 13 biomarkers decreased. CRCP reversed abnormal changes in biomarkers, including 5-l -glutamyl-taurine, 5-aminopentanoic acid, cis-4-octenedioic acid and 2-octenedioic acid. These biomarkers show that hyperlipidemia is related to the metabolic pathways of taurine and hypotaurine metabolism, fatty acid biosynthesis , and arginine and proline metabolism . CRCP mainly prevents hyperlipidemia by intervening in these metabolic pathways.  相似文献   

3.
4.
The aim of this study was to demonstrate the altered metabolic infrastructure of pregnant women with methylenetetrahydrofolate reductase (MTHFR) polymorphisms at first trimester and during delivery. Eight singleton pregnant women with MTHFR polymorphisms were compared with 10 normal pregnant women. Maternal blood samples were obtained twice during their pregnancy period (between the 11th and 14th gestational weeks and during delivery). Metabolomic analysis was performed using GC–MS. The GC–MS based metabolomic profile helped identify 95 metabolites in the plasma samples. In the MTHFR group, the levels of 1-monohexadecanoylglycerol, pyrophosphate, benzoin, and linoleic acid significantly decreased (P ˂ 0.05 for all), whereas the levels of glyceric acid, l -tryptophan, l -alanine, l -proline, norvaline, l -threonine, and myo-inositol significantly increased (P ˂ 0.01 for the first two metabolites, P ˂ 0.05 for the others) at 11–14 gestational weeks. Conversely, the levels of benzoin, 1-monohexadecanoylglycerol, pyruvic acid, l -proline, phosphoric acid, epsilon-caprolactam, and pipecolic acid significantly decreased in the MTHFR group, whereas metabolites such as hexadecanoic acid and 2-hydroxybutyric acid increased significantly in the study group during delivery. An impaired energy metabolism pathway, vitamin B complex disorders, tendency for metabolic acidosis (oxidative stress), and the need for cell/tissue support seem prevalent in pregnancies with MTHFR polymorphisms.  相似文献   

5.
6.
Cui  Li  Xu  Fengjuan  Jiang  Jun  Sun  E.  Zhang  Zhenhai  Cheng  Xudong  Wang  Jing  Jia  Xiaobin 《Chromatographia》2014,77(17):1223-1234

Herba Epimedii (Epimedium) is a kind of tonic herb, widely used in China. Epimedin A is a major component of Herba Epimedii with bioactivities. Analysis of the metabolic profile in vivo plays a pivotal role in understanding how traditional Chinese medicine works. And the metabolites of epimedin A might influence the effects of Herba Epimedii. Moreover, the metabolic routes of epimedin A provide an important basis for safety evaluation. Until now, little has been known about the metabolism of epimedin A. The current study was designed to characterize the metabolic pathways of epimedin A in vivo. The metabolites in rat plasma, bile, feces, and urine were identified by UPLC/Q–TOF–MS analysis. A total of 27 metabolites from epimedin A were detected or tentatively identified. The major metabolic processes were hydrolysis, hydrogenation, hydroxylation, dehydrogenation, demethylation, and conjugation with glucuronic acid and different sugars. The present study revealed the metabolic pathways of epimedin A in rat for the first time, and epimedin A could undergo extensive phase I and phase II metabolism in rat. These findings would provide an important basis for the further study and clinical application of epimedin A. In addition, the results of this work have shown the feasibility of the UPLC/Q–TOF–MS approach for rapid and reliable characterization of metabolites.

  相似文献   

7.
Gigantol is a typical bibenzyl compound isolated from Dendrobii Caulis that has been widely used as a medicinal herb in China for the treatment of diabetic cataract, cancer and arteriosclerosis obliterans and as a tonic for stomach nourishment, saliva secretion promotion and fever reduction. However, few studies have been carried out on its in vivo metabolism. In the present study, a rapid and sensitive method based on ultra‐performance liquid chromatography/electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry (UPLC‐Q/TOF‐MS) in positive ion mode was developed and applied to identify the metabolites of gigantol in rat urine after a single oral dose (100 mg/kg). Chromatographic separation was performed on an Acquity UPLC HSS T3 column (100 × 2.1 mm i. d., 1.8 µm) using acetonitrile and 0.1% aqueous formic acid as mobile phases. A total of 11 metabolites were detected and identified as all phase II metabolites. The structures of the metabolites were identified based on the characteristics of their MS, MS2 data and chromatographic retention times. The results showed that glucuronidation is the principal metabolic pathway of gigantol in rats. The newly identified metabolites are useful to understand the mechanism of elimination of gigantol and, in turn, its effectiveness and toxicity. As far as we know, this is the first attempt to investigate the metabolic fate of gigantol in vivo. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, ultraperformance liquid chromatography/quadrupole time‐of‐flight mass spectrometry (UPLC‐Q‐TOF/MS) and the MetaboLynx? software combined with mass defect filtering were applied to identity the metabolites of isoquercitrin using an intestinal mixture of bacteria and 96 isolated strains from human feces. The human incubated samples collected for 72 h in the anaerobic incubator and extracted with ethyl acetate were analyzed by UPLC‐Q‐TOF/MS within 10 min. The parent compound and five metabolites were identified by eight isolated strains, including Bacillus sp. 17, Veillonella sp. 23 and 32 and Bacteroides sp. 40, 41, 56, 75 and 88 in vitro. The results indicate that quercetin, acetylated isoquercitrin, dehydroxylated isoquercitrin, hydroxylated quercetin and hydroxymethylated quercetin are the major metabolites of isoquercitrin. Furthermore, a possible metabolic pathway for the biotransformation of isoquercitrin was established in intestinal flora. This study will be helpful for understanding the metabolic route of isoquercitrin and the role of different intestinal bacteria in the metabolism of natural compounds. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Metabonomics based on GC‐MS was used to study the possible anti‐inflammatory mechanisms of volatile oils of Angelica sinensis (VOAS) in rats with acute inflammation. Acute inflammation was induced by subcutaneous injection of carrageenan in rats. The levels of prostaglandin E2 (PGE2), histamine (HIS) and 5‐hydroxytryptamine (5‐HT) in the inflammatory fluid were detected. Principal component analysis and orthogonal partial least squares‐discriminant analysis models were performed for pattern recognition analysis. After the administration of VOAS, the levels of PGE2, HIS, and 5‐HT returned to levels observed in normal group. According to GC‐MS analysis, the intervention of VOAS in rats with acute inflammation induced substantial and characteristic changes in their metabolic profiles. Fourteen metabolite biomarkers, namely, lactic acid, malic acid, citric acid, trans‐dehydroandrosterone, aldosterone, linoleic acid, hexadecanoic acid, pregnenolone, octadecenoic acid, myristic acid, l ‐histidine, octadecanoic acid, arachidonic acid (AA) and l ‐tryptophan, were detected in the inflammatory fluid. The levels of all biomarkers either increased or decreased significantly in model groups. VOAS possibly intervened in the metabolic process of inflammation by altering histidine metabolism, tryptophan metabolism, AA metabolism, steroid hormone biosynthesis, fatty acid metabolism and energy metabolism. Metabonomics was used to reflect an organism's physiological and metabolic state comprehensively, and it is a potentially powerful tool that reveals the anti‐acute‐inflammatory mechanism of VOAS. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
11.
Polyphyllin I (PPI), a natural steroidal saponin originating from rihzome of Paris polyphylla , is a potential anticancer candidate. Previous pharmacokinetics study showed that the oral bioavailability of PPI was very low, which suggested that certain amount of PPI might be metabolized in vivo . However, to date, information regarding the final metabolic fates of PPI is very limited. In this study, metabolites of PPI and their pharmacokinetics in rats were investigated using UPLC‐QTOF‐MS/MS and LC‐TQ‐MS/MS. A total of seven putative metabolites, including six phase I and one phase II metabolites, were detected and identified with three exact structures by comparison with authentic standards for the first time. Oxidation, deglycosylation and glucuronidation were found to be the major metabolic processes of the compound in rats. The pharmacokinetics of prosapogenin A, trillin and diosgenin, three deglycosylation metabolites of PPI with definite anticancer effects, were further studied, which suggested that the metabolites underwent a prolonged absorption and slower elimination after intragastric administration of PPI at the dose of 500 mg/kg. This study provides valuable and new information on the metabolic fate of PPI, which will be helpful in further understanding its mechanism of action.  相似文献   

12.
Vancomycin (VCM) is clinically used in treating patients with postoperative intracranial infections. The cerebrospinal fluid (CSF) concentration of VCM varies greatly among patients. To guide the dosage regimens, monitoring of VCM in CSF is needed. However a method for analysis of VCM in human CSF is lacking. An ultraperformance liquid chromatography tandem mass spectrometry (UPLC–MS/MS) was developed and validated for analysis of VCM in human CSF, and the agreement of UPLC–MS/MS and chemiluminescence immunoassay (CLIA) in the analysis of CSF VCM was evaluated. The ion transitions were m/z 725.5 > 144.1 for VCM and m/z 455.2 > 308.2 for methotrexate (internal standard). The agreement between UPLC–MS/MS and CLIA was evaluated by Bland–Altman plot in 179 samples. The calibration range of the UPLC–MS/MS method was 1–400 mg/L. The inaccuracy and imprecision were −0.69–10.80% and <4.95%. The internal standard normalized recovery and matrix factor were 86.14–99.31 and 85.84–92.07%, respectively. The measurements of CLIA and UPLC–MS/MS were strongly correlated (r > 0.98). The 95% limit of agreement of the ratio of CLIA to UPLC‐MS/MS was 61.66–107.40%. Further studies are warranted to confirm the results.  相似文献   

13.
The aim of this study was to characterize the serum metabolic profiles of patients with Alzheimer’s disease (AD) and amnestic mild cognitive impairment (AMCI) using metabolomics based on gas chromatography–mass spectrometry (GC/MS). Serum samples were collected from patients with AD (n = 30) and AMCI (n = 32), and normal healthy controls (NOR, n = 40). Metabolite profiles were performed with GC/MS in conjunction with multivariate statistical analysis, and possible biomarker metabolites were identified. Thirty-one kinds of endogenous metabolites could be identified simultaneously. Eleven components were chosen as biomarker metabolites between AD and NOR groups, and these metabolites were closely related to seven biological pathways: arginine and proline metabolism, phenylalanine metabolism, β-alanine metabolism, primary bile acid synthesis, glutathione metabolism, starch and sucrose metabolism, and steroid hormone biosynthesis. Meanwhile, 10 components were chosen as biomarker metabolites between AMCI and NOR groups and seven biological pathways were closely related: arginine and proline metabolism, phenylalanine metabolism, citrate cycle, alanine, aspartate and glutamate metabolism, taurine and hypotaurine metabolism, starch and sucrose metabolism, and steroid hormone biosynthesis. Our study distinguished serum metabotypes between AD, AMCI and NOR patients successfully. The implementation of this metabolomic strategy may help to develop biochemical insight into the metabolic alterations in AD/AMCI and will be helpful for the further understanding of pathogenesis.  相似文献   

14.
In our previous studies, caudatin‐2,6‐dideoxy‐3‐O‐methy‐β‐d‐ cymaropyranoside (CDMC) was for the first time isolated from Cynanchum auriculatum Royle ex Wightand and was reported to possess a wide range of biological activities. However, the routes and metabolites of CDMC produced by intestinal bacteria are not well understood. In this study, ultra‐performance liquid chromatography/quadrupole time‐of‐flight mass spectrometry (UPLC‐Q‐TOF‐MS) technique combined with MetabolynxTMsoftware was applied to analyze metabolites of CDMC by human intestinal bacteria. The incubated samples collected for 48 h in an anaerobic incubator and extracted with ethyl acetate were analyzed by UPLC‐Q‐TOF‐MS within 12 min. Eight metabolites were identified based on MS and MS/MS data. The results indicated that hydrolysis, hydrogenation, demethylation and hydroxylation were the major metabolic pathways of CDMC in vitro. Seven strains of bacteria including Bacillus sp. 46, Enterococcus sp. 30 and sp. 45, Escherichia sp. 49A, sp. 64, sp. 68 and sp. 75 were further identified using 16S rRNA gene sequencing owing to their relatively strong metabolic capacity toward CDMC. The present study provides important information about metabolic routes of CDMC and the roles of different intestinal bacteria in the metabolism of CDMC. Moreover, those metabolites might influence the biological effect of CDMC in vivo, which affects the clinical effects of this medicinal plant. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Ginsenoside Re, an active ingredient in Panax ginseng, is widely used as a therapeutic and nutriment. The intestinal microbiota plays crucial roles in modulating the pharmacokinetics and pharmacological actions of ginsenoside Re. The aim of this study was to explore the relationship between bacterial community variety and the metabolic profiles of ginsenoside Re. We developed two models with intestinal dysbacteriosis: a pseudo‐germ‐free model induced by a nonabsorbable antimicrobial mixture (ATM), and Qi‐deficiency model established via over‐fatigue and acute cold stress (OACS). First, the bacterial community structures in control, ATM and OACS rats were compared via 16S ribosomal RNA amplicon sequencing. Then, the gut microbial metabolism of ginsenoside Re was assessed qualitatively and quantitatively in the three groups by UPLC‐Q‐TOF/MS and HPLC‐TQ‐MS, respectively. Ten metabolites of ginsenoside Re were detected and tentatively identified, three of which were novel. Moreover, owing to significant differences in bacterial communities, deglycosylated products, as the main metabolites of ginsenoside Re, were produced at lower levels in ATM and OACS models. Importantly, the levels of these deglycosylated metabolites correlated with alterations in Prevotella, Lactobacillus and Bacteroides populations, as well as glycosidase activities. Collectively, biotransformation of ginsenoside Re is potentially influenced by regulation of the composition of intestinal microbiota and glycosidase activities.  相似文献   

16.
Herba Epimedii (Epimedium) is a kind of tonic herb, widely used in China. Epimedin A is a major component of Herba Epimedii with bioactivities. Analysis of the metabolic profile in vivo plays a pivotal role in understanding how traditional Chinese medicine works. And the metabolites of epimedin A might influence the effects of Herba Epimedii. Moreover, the metabolic routes of epimedin A provide an important basis for safety evaluation. Until now, little has been known about the metabolism of epimedin A. The current study was designed to characterize the metabolic pathways of epimedin A in vivo. The metabolites in rat plasma, bile, feces, and urine were identified by UPLC/Q–TOF–MS analysis. A total of 27 metabolites from epimedin A were detected or tentatively identified. The major metabolic processes were hydrolysis, hydrogenation, hydroxylation, dehydrogenation, demethylation, and conjugation with glucuronic acid and different sugars. The present study revealed the metabolic pathways of epimedin A in rat for the first time, and epimedin A could undergo extensive phase I and phase II metabolism in rat. These findings would provide an important basis for the further study and clinical application of epimedin A. In addition, the results of this work have shown the feasibility of the UPLC/Q–TOF–MS approach for rapid and reliable characterization of metabolites.  相似文献   

17.
Forsythia suspensa Vahl (Oleaceae) is an important original plant in traditional Chinese medicine. The air‐dried fruits of Forsythia suspensa have long been used to relieve respiratory symptoms. Phillyrin is one of the main chemical constituent of Forsythia suspensa. A clear understanding of the metabolism of phillyrin is very important in rational clinical use and pharmacological research. In this study, the metabolism of phillyrin in rat was investigated for the first time using an ultra‐high‐performance liquid chromatography quadrupole time‐of‐flight mass spectrometry (UPLC‐Q‐TOF‐MS) method. Bile, urine and feces were collected from rats after single‐dose (10 mg/kg) orally administered phillyrin. Liquid–liquid extraction and ultrasonic extraction were used to prepare samples. UPLC‐Q‐TOF‐MS analysis of the phillyrin samples showed that phillyrin was converted to a major metabolite, M26, which underwent deglucosidation, further dehydration and desaturation. A total of 34 metabolites were detected including 30 phase I and four phase II metabolites. The conjugation types and structure skeletons of the metabolites were preliminarily determined. Moreover, 28 new metabolites were reported for the first time. The main biotransformation route of phillyrin was identified as hydrolysis, oxidation and sulfation. These findings enhance our understanding of the metabolism and the real active structures of phillyrin. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
We evaluated the protective effect and toxicity of extracts from Mylabris phalerata Pallas by measuring the activated partial thromboplastin time, prothrombin time, venous thrombosis and acute toxicity in rats. Results showed the petroleum ether and water fractions of M. phalerata inhibited thrombosis but hardly prolonged the activated partial thromboplastin time and prothrombin time in rats. The trichloromethane fraction had obvious toxicity with an LD50 of 0.2 g/kg in vivo, and contained many cantharidin analogs (CAs) by ultra-performance liquid chromatography–quadrupole ion trap–tandem mass spectrometry (UPLC–QTRAP–MS/MS). CAs are the major potential bioactivity constituent in M. phalerata. An effective and reliable UPLC–QTRAP–MS/MS method was successfully developed to separate and identify CAs. The fragmentation patterns of five purified compounds were applied to elucidate the structure of their analogs. Thirty-four CAs were characterized or tentatively identified, eight of which are proposed to be novel compounds ( 13 – 17 , 20 , 21 , 23 ), and their fragmentation patterns were investigated for the first time. Most importantly, a rapid and reliable UPLC–MS method was developed to identify the CAs of M. phalerata. This method has contributed to the discovery of most of these unknown analogs or their metabolites in M. phalerata effectively and quickly, and does not rely on limited chemical structural diversity libraries.  相似文献   

19.
A clear understanding of the metabolism of Traditional Chinese Medicines is extremely important in their rational clinical application and effective material foundation research. A novel and reliable strategy was performed to find more metabolites of paeoniflorin, determine the metabolites of total paeony glucosides (TPG) by means of determining those metabolites of paeoniflorin, and compare the metabolism differences between paeoniflorin and TPG by intragastric administration. This strategy was characterized as follows. Firstly, the rats were divided into two groups (the paeoniflorin group and the TPG group) to find differences in metabolism mechanisms between paeoniflorin and TPG. Secondly, UPLC‐FT‐ICR MS and UPLC‐Q‐TOF MS2 were applied to obtain accurate molecular weight and structural information, respectively. Thirdly, the metabolites were tentatively identified by a combination of data‐processing methods including mass defect screening, characteristic neutral loss screening and product ion screening. Finally, a comparative study was employed in the metabolism of paeoniflorin and TPG. Based on the strategy, 18 metabolites of paeoniflorin (including four new compounds) and 11 metabolites of TPG (including two new compounds) were identified. In all of the identified metabolites of paeoniflorin, two metabolites in rat plasma, four metabolites in rat urine and six metabolites in rat feces were found for the first time after paeoniflorin administration. The results indicate that hydrolyzation of the ester bond and glucosidic band and conjugation with glucuronide were the major metabolic pathways of paeoniflorin. The metabolites of paeoniflorin and TPG in rat plasma, urine and feces have been detected for the first time after intragastric administration. The results may contribute to a better understanding of the metabolism mechanism and provide a scientific rationale for researching the material basis of paeoniflorin and TPG in vivo.  相似文献   

20.
In this paper, an ultra high performance liquid chromatography tandem mass spectrometric (UPLC‐ESI‐MS/MS) method in positive ion mode was established to systematically identify and to compare the major aconitum alkaloids and their metabolites in rat plasma and urine after oral administration of Fuzi extract. A total twenty‐nine components including twenty‐five C19‐diterpenoid alkaloids and four C20‐diterpenoid alkaloids were identified in Fuzi extract. Thirteen of the parent components and five metabolites were detected in rat plasma and sixteen parent compounds and six metabolites in urine. These parent components found in rat plasma and urine were mainly C19‐diterpenoid alkaloids. All of the metabolites in vivo were demethylated metabolites (phase I metabolites), which suggested that demethylation was the major metabolic pathway of aconitum alkaloids in vivo. A comparison of the parent components in rat plasma and urine revealed that 3‐deoxyacontine was found in plasma but not in urine, while kalacolidine, senbusine and 16‐β‐hydroxycardiopetaline existed in urine but not in plasma, which indicated that most alkaloids components were disposed and excreted in prototype form. This research provides some important information for further metabolic investigations of Fuzi in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号