首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of non-covalently bound donor-acceptor dyads, consisting of C60 as the electron acceptor and cycloparaphenylene (CPP) as the electron donor, have been reported. A hypsochromic shift of the charge transfer (CT) band in polar medium has been found in [10]CPP⊃Li+@C60 . To explore this anomalous effect, we study inclusion complexes [10]CPP⊃Li+@C60-MP , [10]CPP⊃C60-MPH+ , and [10]CPP⊃C60-PPyMe+ formed by fulleropyrrolidine derivatives and [10]CPP using the DFT/TDDFT approach. We show that the introduction of a positively charged fragment into fullerene stabilizes CT states that become the lowest-lying excited states. These charge-separated states can be generated by the decay of locally excited states on a nanosecond to picosecond time scale. The distance of the charged fragment to the center of the fullerenic cage and its accessibility to the solvent determine the strength of the hypsochromic shift.  相似文献   

2.
Both pillar[n]arenes (P[n]As) and [n]cycloparaphenylenes ([n]CPPs) play an important role in supramolecular chemistry. Herein, we report the precise synthesis of two multifunctional bismacrocycles [n]CPP-P[5]A by integrating P[5]A into the [n]CPP backbone. The photoluminescence quantum yield (ΦF) of the bismacrocycles was found to show a dramatic increase relative to the corresponding [n]CPPs. The chiral enantiomers (pR)/(pS)-[8]CPP-P[5]A were successfully isolated by chiral HPLC, and showed promising properties of circularly polarized luminescence (glum≈0.02). In addition, [n]CPP-P[5]A bismacrocycles are capable of binding pyridinium salts and fullerene derivatives with high affinity and specificity within the two distinct cavities. Transient absorption studies showed that photo-induced electron transfer occurs in [10]CPP-P[5]A⊃C60 complex. Our results suggest that [n]CPP-P[5]A are potentially useful in CPL-active materials, multiple guest recognition and supramolecular polymer preparation.  相似文献   

3.
Mono‐ and multinuclear complexes of ruthenium and [n]cycloparaphenylene (CPP, n=5 and 6) were synthesized in excellent yields through ligand exchange of the cationic complex [(Cp)Ru(CH3CN)3](PF6) with CPP. In the multinuclear complexes, ruthenium selectively coordinated to alternate paraphenylene units to give bis‐ and tris‐coordinated Ru complexes for [5] and [6]CPPs, respectively. Single‐crystal X‐ray analysis revealed the Ru was coordinated with η6‐hapticity on the convex surface of CPP.  相似文献   

4.
The carbon–carbon (C?C) bond activation of [n]cycloparaphenylenes ([n]CPPs) by a transition‐metal complex is herein reported. The Pt0 complex Pt(PPh3)4 regioselectively cleaves two C?C σ bonds of [5] CPP and [6]CPP to give cyclic dinuclear platinum complexes in high yields. Theoretical calculations reveal that the relief of ring strain drives the reaction. The cyclic complex was further transformed into a cyclic diketone by using a CO insertion reaction.  相似文献   

5.
The complex of [10]cycloparaphenylene ([10]CPP) with bis(azafullerene) (C59N)2 is investigated experimentally and computationally. Two [10]CPP rings are bound to the dimeric azafullerene giving [10]CPP?(C59N)2?[10]CPP. Photophysical and redox properties support an electronic interaction between the components especially when the second [10]CPP is bound. Unlike [10]CPP?C60, in which there is negligible electronic communication between the two species, upon photoexcitation a partial charge transfer phenomenon is revealed between [10]CPP and (C59N)2 reminiscent of CPP‐encapsulated metallofullerenes. Such an alternative electron‐rich fullerene species demonstrates C60‐like ground‐state properties and metallofullerene‐like excited‐state properties opening new avenues for construction of functional supramolecular architectures with organic materials.  相似文献   

6.
The size‐ and orientation‐selective formation of the shortest‐possible C70 peapod in solution and in the solid state by using the shortest structural unit of an “armchair” carbon nanotube (CNT), cycloparaphenylene (CPP), has been studied. [10]CPP and [11]CPP exothermically formed 1:1 complexes with C70, thereby giving the resulting peapods. A van′t Hoff plot analysis revealed that the formation of these complexes in 1,2‐dichlorobenzene was mainly driven by entropy, whereas the theoretical calculations suggested that the formation of the complex in the gas phase was predominantly driven by enthalpy. C70 was found to exist in two distinct orientations inside the CPP cavity, namely “lying” and “standing”, depending on the specific size of the CPP. The theoretical calculations and the X‐ray crystallographic analysis revealed that the interactions between [10]CPP and the short axis of C70 in its lying orientation were isotropic and similar to those observed between [10]CPP and C60. However, the interactions between [11]CPP and C70 in its standing orientation were anisotropic, thereby involving the radial deformation of [11]CPP into an ellipsoidal shape. This “induced fit” maximized the van der Waals interactions with the long axis of C70. Theoretical calculations revealed that the deformation occurred readily with low energy loss, thus suggesting that CPPs are highly radially elastic molecules. These results also indicate that the same type of radial deformation should occur in CNT peapods that encapsulate anisotropic fullerenes.  相似文献   

7.
Cycloparaphenylenes (CPPs) are nanosized structures with unique isolated and bulk properties, and are synthetic targets for the template‐driven bottom‐up synthesis of carbon nanotubes. Thus, a systematic understanding of the supramolecular order at the nanoscale is of utmost relevance for molecular engineering. In this study, it is found that intramolecular noncovalent (dispersion) interactions must be taken into account for obtaining accurate estimates of the structural and optoelectronic properties of [n]CPP compounds, and their influence as the number of repeat units increases from n=4 to n=12 is also analyzed, both in the gas phase and in solution. The supramolecular self‐assembly, for which both intra‐ and intermolecular noncovalent interactions are relevant, of [6]CPP is also investigated by calculating the binding energies of dimers taken along several crystal directions. These are also used to estimate the cohesive energy of the crystal, which is compared to the value obtained by means of dispersion‐corrected DFT calculations using periodic boundary conditions. The reasonable agreement between both computational strategies points towards a first estimate of the [6]CPP cohesive energy of around 50 kcal mol?1.  相似文献   

8.
Seven crystal structures of five first‐row (Fe, Co, Ni, Cu, and Zn) and one second‐row (Cd) transition metal–4‐picoline (pic)–sulfate complexes of the form [M(pic)x]SO4 are reported. These complexes are catena‐poly[[tetrakis(4‐methylpyridine‐κN)metal(II)]‐μ‐sulfato‐κ2O:O′], [M(SO4)(C6H7N)4]n, where the metal/M is iron, cobalt, nickel, and cadmium, di‐μ‐sulfato‐κ4O:O‐bis[tris(4‐methylpyridine‐κN)copper(II)], [Cu2(SO4)2(C6H7N)6], catena‐poly[[bis(4‐methylpyridine‐κN)zinc(II)]‐μ‐sulfato‐κ2O:O′], [Zn(SO4)(C6H7N)2]n, and catena‐poly[[tris(4‐methylpyridine‐κN)zinc(II)]‐μ‐sulfato‐κ2O:O′], [Zn(SO4)(C6H7N)3]n. The Fe, Co, Ni, and Cd compounds are isomorphous, displaying polymeric crystal structures with infinite chains of MII ions adopting an octahedral N4O2 coordination environment that involves four picoline ligands and two bridging sulfate anions. The Cu compound features a dimeric crystal structure, with the CuII ions possessing square‐pyramidal N3O2 coordination environments that contain three picoline ligands and two bridging sulfate anions. Zinc crystallizes in two forms, one exhibiting a polymeric crystal structure with infinite chains of ZnII ions adopting a tetrahedral N2O2 coordination containing two picoline ligands and two bridging sulfate anions, and the other exhibiting a polymeric crystal structure with infinite chains of ZnII ions adopting a trigonal bipyramidal N3O2 coordination containing three picoline ligands and two bridging sulfate anions. The structures are compared with the analogous pyridine complexes, and the observed coordination environments are examined in relation to crystal field theory.  相似文献   

9.
High-boiling hydrocarbons often yield abundant [M — 2H]+. ions under the conditions of field desorption mass spectrometry (FDMS). This work evaluated [M — 2H]+. formation from various saturated and aromatic compounds. The most intense [M — 2H]+. signals observed resulted from the analysis of saturated compounds containing long and branched chains. The presence of an aromatic ring in a molecule, however, strongly diminished [M — 2H]+. formation during FDMS. Experiments involving manipulation of the applied potential between the FD anode and cathode reveal the strong field dependence of this phenomenon. At a potential difference of 10 kV, strong [M — 2H]+. formation occurred for samples including squalane, hexatriacontane (C36 n-alkane) and a Polywax 655 mixture. Analyses of the same samples conducted at a potential difference of 4 kV produced only weak (if measurable) [M — 2H+.] signals. The magnitude of [M — 2H]+. formation also decreased as the sample quantity decreased.  相似文献   

10.
Chemical reduction of several cycloparaphenylenes (CPPs) ranging in size from [8]CPP to [12]CPP has been investigated with potassium metal in THF. The X-ray diffraction characterization of the resulting doubly-reduced [n]CPPs provided a unique series of carbon nanohoops with increasing dimensions and core flexibility for the first comprehensive structural analysis. The consequences of electron acquisition by a [n]CPP core have been analyzed in comparison with the neutral parents. The addition of two electrons to the cyclic carbon framework of [n]CPPs leads to the characteristic elliptic core distortion and facilitates the internal encapsulation of sizable cationic guests. Molecular and solid-state structure changes, alkali metal binding and unique size-dependent host abilities of the [n]CPP2− series with n = 6–12 are discussed. This in-depth analysis opens new perspectives in supramolecular chemistry of [n]CPPs and promotes their applications in size-selective guest encapsulation and chemical separation.

The series of doubly-reduced cycloparaphenylenes (CPPs) with increasing dimensions and flexibility shows the size-dependent structural changes and enhanced host abilities.  相似文献   

11.
[11]Cycloparaphenylene ([11]CPP) selectively encapsulates La@C82 to form the shortest possible metallofullerene–carbon nanotube (CNT) peapod, La@C82?[11]CPP, in solution and in the solid state. Complexation in solution was affected by the polarity of the solvent and was 16 times stronger in the polar solvent nitrobenzene than in the nonpolar solvent 1,2‐dichlorobenzene. Electrochemical analysis revealed that the redox potentials of La@C82 were negatively shifted upon complexation from free La@C82. Furthermore, the shifts in the redox potentials increased with polarity of the solvent. These results are consistent with formation of a polar complex, (La@C82)δ??[11]CPPδ+, by partial electron transfer from [11]CPP to La@C82. This is the first observation of such an electronic interaction between a fullerene pea and CPP pod. Theoretical calculations also supported partial charge transfer (0.07) from [11]CPP to La@C82. The structure of the complex was unambiguously determined by X‐ray crystallographic analysis, which showed the La atom inside the C82 near the periphery of the [11]CPP. The dipole moment of La@C82 was projected toward the CPP pea, nearly perpendicular to the CPP axis. The position of the La atom and the direction of the dipole moment in La@C82?[11]CPP were significantly different from those observed in La@C82?CNT, thus indicating a difference in orientation of the fullerene peas between fullerene–CPP and fullerene–CNT peapods. These results highlight the importance of pea–pea interactions in determining the orientation of the metallofullerene in metallofullerene–CNT peapods.  相似文献   

12.
Radical copolymerization of fullerene (C60) and n‐butyl methacrylate (BMA) has been carried out using triphenylbismuthonium ylide as an initiator at 70°C for 4 h in a dilatometer under nitrogen atmosphere. The kinetic expression of the polymerization is Rpα [Ylide]0.5[C60]?1.0[BMA]1.2, which is similar to that expected for ideal kinetics. The rate of polymerization increases with an increase in the concentration of initiator and BMA. However, it decreases with an increase in the concentration of fullerene. Fullerene acts as radical scavengers causing retardation in polymerization. The activation energy of copolymerization was estimated to be 72.2 K J mol?1. The fullerene‐containing BMA copolymers were characterized by FTIR, 1H NMR, 13C NMR, UV–vis, and GPC analyses. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 43: 608–619, 2011  相似文献   

13.
The oxidation processes of [n]cycloparaphenylenes ([n]CPPs) (n=5–12) were systematically investigated by cyclic and rotating disk electrode voltammetry. All CPPs underwent pseudo‐reversible two‐electron oxidation irrespective of ring size, forming the corresponding radical cations and then dications. The results were in sharp contrast to those observed for linear oligoparaphenylenes, which only undergo one‐electron oxidation. The difference in the first and second oxidation potentials in the CPP oxidation was affected by the ring size and became more significant as the decrease of CPP size. In other words, while the first oxidation from neutral CPP to the radical cation occurred faster as the size of CPP becomes smaller, the second oxidation from the radical cation to dication exhibited opposite size dependence.  相似文献   

14.
A group of rhenium (I) complexes including in their structure ligands such as CF3SO3‐, CH3CO2‐, CO, 2,2′‐bipyridine, dipyridil[3,2‐a:2′3′‐c]phenazine, naphthalene‐2‐carboxylate, anthracene‐9‐carboxylate, pyrene‐1‐carboxylate and 1,10‐phenanthroline have been studied for the first time by mass spectrometry. The probe electrospray ionization (PESI) is a technique based on electrospray ionization (ESI) that generates electrospray from the tip of a solid metal needle. In this work, mass spectra for organometallic complexes obtained by PESI were compared with those obtained by classical ESI and high flow rate electrospray ionization assisted by corona discharge (HF‐ESI‐CD), an ideal method to avoid decomposition of the complexes and to induce their oxidation to yield intact molecular cation radicals in gas state [M]+. and to produce their reduction yielding the gas species [M]–.. It was found that both techniques showed in general the intact molecular ions of the organometallics studied and provided additional structure characteristic diagnostic fragments. As the rhenium complexes studied in the present work showed strong absorption in the UV–visible region, particularly at 355 nm, laser desorption ionization (LDI) mass spectrometry experiments could be conducted. Although intact molecular ions could be detected in a few cases, LDI mass spectra showed diagnostic fragments for characterization of the complexes structure. Furthermore, matrix‐assisted laser desorption ionization (MALDI) mass spectra were obtained. Nor‐harmane, a compound with basic character, was used as matrix, and the intact molecular ions were detected in two examples, in negative ion mode as the [M]–. species. Results obtained with 2‐[(2E)‐3‐(4‐tert‐buthylphenyl)‐2‐methylprop‐2‐enylidene] malononitrile (DCTB) as matrix are also described. LDI experiments provided more information about the rhenium complex structures than did the MALDI ones. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The field ionization (FI) mass spectra of n-heptanal and a series of deuterium labeled analogs have been studied, with the objectives of initiating systematic investigations of reaction mechanisms of FI produced ions and to permit comprison with those found for other ionization processes. It is now recognized that FI ions have: (a) lower average internal energies and (b) shorter residence times than similar ions generated by electron-impact (EI), and the possibility exists of H/D-randomization occuring in ions formed by desorption from the emitter, by unimolecular decomposition close to the emitter and by either ‘fast’ or ‘slow’ metastable decompositions. In this study only the peak shifts of normal ions could be utilized; accurate mass measurements of all major ions revealed elemental compositions similar to EI. A site-specific McLafferty rearrangement gave the base peak at m/e 44 ([C2H4O]+.), although the apparently complementary ion at m/e 70 ([C5H10]+.) arose in a less specific process. Ions at m/e 43 ([C3H7]+) and 71 ([C5H11]+ 80%; [C4H7O]+ 20%) were apparantly generated without significant H/D-scrambling. Of special interest was the observation of the rearrangement ion at m/e 86 ([C5H10O]+.) caused by loss of C-2 and C-3 as C2H4, as found for EI. It is concluded that at least in this system, decomposing molecular ions formed: (a) in the gas phase extremely close to the emitter and/or (b) on the emitter surface, have lifetimes sufficiently short to preclude complete H/D randomization. The results also provide evidence for common fragmentation mechanisms for heptanal molecular ions at both the low end and the high end of the energy distribution.  相似文献   

16.
Results of DFT calculations of the structure and thermodynamics of formation of aqua and tetraammine Cu(II) complexes inside CB[n] (n = 6,8) are presented in this study. Formation thermodynamics of the complexes in the cavitands was evaluated by taking into account the most probable number of water molecules inside CB[n]. In this methodology, the complexation was first considered as a substitution reaction in which the guest complex displaces partially or completely the water molecules that are located inside the cavity. The water molecules present in the cavitand were shown to play an important role in the fixation of the guest complex inside the cavity due to the hydrogen bonds with the oxygen portals. The hydration of Cu(II) ion inside CB[6] leads to the formation of an inclusion compound with the formula {[Cu(H2O)4]2+·2H2O}@CB[6] while in CB[8] {[Cu(H2O)6]2+·4H2O}@CB[8] is formed. For the binding of tetraammine Cu(II) complex, CB[8] was determined to be a significantly more suitable “container” than CB[6]. Both a direct embedding of this complex into the CB[8] and another mechanism in which ammonia molecules replace the water molecules in the Cu(II) aqua complex, preexisting in CB[8] were determined to be thermodynamically possible. Both these lead to the formation of the resultant inclusion compound described by the formula {[Cu(NH3)4(H2O)2]2+·4H2O}@CB[8].  相似文献   

17.
The crystal structures of three first‐row transition metal–pyridine–sulfate complexes, namely catena‐poly[[tetrakis(pyridine‐κN)nickel(II)]‐μ‐sulfato‐κ2O:O′], [Ni(SO4)(C5H5N)4]n, (1), di‐μ‐sulfato‐κ4O:O‐bis[tris(pyridine‐κN)copper(II)], [Cu2(SO4)2(C5H5N)6], (2), and catena‐poly[[tetrakis(pyridine‐κN)zinc(II)]‐μ‐sulfato‐κ2O:O′‐[bis(pyridine‐κN)zinc(II)]‐μ‐sulfato‐κ2O:O′], [Zn2(SO4)2(C5H5N)6]n, (3), are reported. Ni compound (1) displays a polymeric crystal structure, with infinite chains of NiII atoms adopting an octahedral N4O2 coordination environment that involves four pyridine ligands and two bridging sulfate ligands. Cu compound (2) features a dimeric molecular structure, with the CuII atoms possessing square‐pyramidal N3O2 coordination environments that contain three pyridine ligands and two bridging sulfate ligands. Zn compound (3) exhibits a polymeric crystal structure of infinite chains, with two alternating zinc coordination environments, i.e. octahedral N4O2 coordination involving four pyridine ligands and two bridging sulfate ligands, and tetrahedral N2O2 coordination containing two pyridine ligands and two bridging sulfate ligands. The observed coordination environments are consistent with those predicted by crystal field theory.  相似文献   

18.
Dications of cycloparaphenyles ([n]CPPs) are known to exhibit in-plane global aromaticity, contained in a nanobelt structure. Recently synthesized ortho and meta isomers of [n]CPPs break the radial symmetry of π structure incorporating perpendicular oriented π orbitals. Herein we set to explore the aromaticity of neutral and dicationic ortho and meta isomers of [8]CPP by dissecting the induced magnetic field to contributions of the twofold radial/perpendicular π system using delocalized canonical molecular orbitals (CMO), and introducing the natural localized molecular orbitals (NLMO) analysis with DFT methods. The dications sustain a reduced global aromatic character of the radial π system under a perpendicular orientation of the external field which declines from ortho to meta isomer and reinforces local aromaticity of ortho ring while it destroys aromaticity of meta ring. Aromaticity variations are determined by symmetry governed rotational excitations of frontier π orbitals. The parallel orientation reveals a substantial reduction of local aromaticity verified with NICSπ analysis and electron delocalization indices.  相似文献   

19.
Dissociative ionization of 1,2-epoxy n-alkanes gives rise to abundant [C4H7O]+ ions of structure [CH3OCHCHCH2]+. This conclusion is drawn from metastable ion analysis and from collisional activation spectra. This fragmentation involves the C? C ring opening and a 1,4-H migration leading to the corresponding enol ether [CH3OCHCHCH2R]+. precursor of [CH3OCHCHCH2]+ fragment. The same isomerization scheme applies to 1,2-epoxy methyl substituted alkanes and 2,3-epoxy n-alkanes.  相似文献   

20.
The mechanism of the reactions of aryl/heteroaryl halides with aryl Grignard reagents catalyzed by [FeIII(acac)3] (acac=acetylacetonate) has been investigated. It is shown that in the presence of excess PhMgBr, [FeIII(acac)3] affords two reduced complexes: [PhFeII(acac)(thf)n] (n=1 or 2) (characterized by 1H NMR and cyclic voltammetry) and [PhFeI(acac)(thf)]? (characterized by cyclic voltammetry, 1H NMR, EPR and DFT). Whereas [PhFeII(acac)(thf)n] does not react with any of the investigated aryl or heteroaryl halides, the FeI complex [PhFeI(acac)(thf)]? reacts with ArX (Ar=Ph, 4‐tolyl; X=I, Br) through an inner‐sphere monoelectronic reduction (promoted by halogen bonding) to afford the corresponding arene ArH together with the Grignard homocoupling product PhPh. In contrast, [PhFeI(acac)(thf)]? reacts with a heteroaryl chloride (2‐chloropyridine) to afford the cross‐coupling product (2‐phenylpyridine) through an oxidative addition/reductive elimination sequence. The mechanism of the reaction of [PhFeI(acac)(thf)]? with the aryl and heteroaryl halides has been explored on the basis of DFT calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号