首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The 13C NMR spectra of a number of iridium complexes and of their adducts with H2, HX, and Cl2 (X = Cl, Br, I) are used to estimate the redox character of these additions. Rather than having the oxidative character expected, H2 addition seems to be reductive. HX and Cl2 additions are oxidative. Some of these complexes appear to have Lewis acid, rather than the expected Lewis base character.  相似文献   

2.
AlCl3-NaCl was utilized as an electrolyte in this work due to its low melting point and Lewis acidity, in which samarium exists in two oxidation states, Sm(III) and Sm(II), resulting in unique electrochemical behaviours. Sm metal dissolves in AlCl3-NaCl melt to form SmCl2, which is verified by electrochemical and spectroscopic techniques. As the Lewis acidity of the melt increases, the diffusion coefficient of Sm(II) gradually increases, and the activation energy of diffusion decreases. Moreover, an additional co-reduction peak of Sm3+ and AlCl4 is observed to be more positive than that of Al(0)/Al(III) in Lewis basic melt, which may be tightly correlated with the variation of Sm(II) coordination in AlCl3-NaCl melt and ligand variation from Cl to AlCl4 and Al2Cl7 as the Lewis acidity of the AlCl3-NaCl melt increases, according to the in situ electronic absorption spectra of Sm in this melt.  相似文献   

3.
Reported are multi‐component one‐pot syntheses of chiral complexes [M(LROR′)Cl2] or [M(LRSR′)Cl2] from the mixture of an N‐substituted ethylenediamine, pyridine‐2‐carboxaldehyde, a primary alcohol or thiol and MCl2 utilizing in‐situ formed cyclized Schiff bases where a C?O bond, two stereocenters, and three C?N bonds are formed (M=Zn, Cu, Ni, Cd; R=Et, Ph; R′=Me, Et, nPr, nBu). Tridentate ligands LROR′ and LRSR′ comprise two chiral centers and a hemiaminal ether or hemiaminal thioether moiety on the dipicolylamine skeleton. Syn‐[Zn(LPhOMe)Cl2] precipitates out readily from the reaction mixture as a major product whereas anti‐[Zn(LPhOMe)Cl2] stays in solution as minor product. Both syn‐[Zn(LPhOMe)Cl2] and anti‐[Zn(LPhOMe)Cl2] were characterized using NMR spectroscopy and mass spectrometry. Solid‐state structures revealed that syn‐[Zn(LPhOMe)Cl2] adopted a square pyramidal geometry while anti‐[Zn(LPhOMe)Cl2] possesses a trigonal bipyramidal geometry around the Zn centers. The scope of this method was shown to be wide by varying the components of the dynamic coordination assembly, and the structures of the complexes isolated were confirmed by NMR spectroscopy, mass spectrometry, and X‐ray crystallography. Syn complexes were isolated as major products with ZnII and CuII, and anti complexes were found to be major products with NiII and CdII. Hemiaminals and hemiaminal ethers are known to be unstable and are seldom observed as part of cyclic organic compounds or as coordinated ligands assembled around metals. It is now shown, with the support of experimental results, that linear hemiaminal ethers or thioethers can be assembled without the assistance of Lewis acidic metals in the multi‐component assembly, and a possible pathway of the formation of hemiaminal ethers has been proposed.  相似文献   

4.
This brief account discusses the development of HCl/TiCl4-n(OR)n (n = 1–4), the titanium-based new initiating systems for living cationic polymerizations of vinyl ethers and styrene. The focus of this development is controlling the Lewis acidity of the metal halide components [TiCl4-n(OR)n] or “activators” in relation to the structure of the monomers. Thus, for vinyl ethers, relatively mild Lewis acids such as TiCl(OiPr)3 and TiCl2(OiPr)2 are effective, whereas for styrene, a stronger Lewis acid such as TiCl3(OiPr) is employed along with an added salt (nBu4N+Cl). In both cases, living polymers of controlled molecular weights can be obtained in methylene chloride solvent at −15°C.  相似文献   

5.
Poly[(R)-(–)-3-(l-pyrrolyl)propyl-N-(3,5-dinitrobenzoyl)-α-phenylglycinate] films were deposited on ITO electrodes using potentiodynamic and galvanostatic methods. Polymerization occurred as a charge dependent process at 1.0 V vs. Ag/Ag+(CH3CN) and was not affected by the presence of nitro groups in the monomer. The surface morphology of the film and its electrochemical properties were studied as a function of deposition charge (Qdep) and deposition method. Film thickness increased in a quasi-linear manner with respect to Qdep within the range 40–80 mC cm2. The galvanostatic method provided easier control of Qdep compared with potentiodynamic deposition, and produced a more adherent film with homogeneous grain geometry. Cyclic voltammetry revealed a well defined redox couple at the anodic region, attributable to polymer p-doping, and a poorly defined redox pair at the cathodic region, attributable to the reduction of the nitro group.  相似文献   

6.
Two-dimensional correlation analysis was carried out in combination with multivariate curve resolution–alternating least squares (MCR-ALS) to analyse time-resolved infrared (IR) difference spectra probing photo-induced ubiquinol formation in detergent-isolated reaction centres from Rhodobacter sphaeroides. The dynamic 2D IR correlation spectra have not only allowed the determination of the concomitance or non-concomitance of different chemical events through known marker bands but also have helped identify new vibrational bands related to the complex series of photochemical and redox reactions. In particular, a strong positive band located at 1565 cm−1 was found to be synchronous with the process of ubiquinol formation. In addition, a tailored MCR-ALS analysis was performed using a priori chemical knowledge of the system, in particular including the pure spectrum of one species obtained from an external measurement. Enhancing the MCR-ALS performance in this way in time-dependent processes is relevant, especially when other essential pieces of information, such as kinetic models, are unavailable. The results give evidence of four independent spectral contributions. Three of them show marker bands for a monoelectronic reduction of the primary quinone QA (QA/QA transition, first contribution), for a monoelectronic reduction of a secondary quinone QB (QB/QB transition, second contribution) and for ubiquinol formation (third contribution). The results obtained also confirm that a key rate-limiting factor is the slow ubiquinone and ubiquinol exchange among micelles, which strongly influences the kinetic profiles of the involved species.  相似文献   

7.
The reactions of equimolar amounts of trans-[ReOC13(PPh3)2] or trans-[Re(NPh)(PPh3)2Cl3] with a Schiff base formed by condensation of 2-hydroxy-4-methoxybenzaldehyde and ethanolamine (H2L) result in the formation of cis-[ReO(HL)PPh3Cl2] (1a) and trans-[Re(NPh)(HL)(PPh3)Cl2] (2b), respectively, in good yields. 1a and 2b have been characterized by a range of spectroscopic and analytical techniques. The X-ray crystal structures of 1a and 2b reveal that 1a is an octahedral cis-Cl,Cl oxorhenium(V) complex, while 2b is a trans-Cl,Cl phenylimidorhenium(V) complex. The complexes are weakly emissive at room temperature with quantum yields of 10?4. Density functional theory calculations of the electronic properties of the complexes were performed and are in agreement with the experimental results. The complexes display quasi-reversible Re(V)/Re(VI) redox couples in acetonitrile. There is reasonable agreement between the experimental and calculated redox potentials of 1a and 2b.  相似文献   

8.
A one step synthesis of ReO2Cl3 is reported. ReO2Cl3 reacts with [(C2H5)4P]+Cl?, forming [(C2H5)4P]+[cis–ReO2Cl4]?, a = 1257.0(2), b = 1026.8(2), c = 1277.9(2) pm, β = 106.659(3)°, P21/n. Also an unstable NO+[ReO2Cl4]? can be obtained from NOCl and ReO2Cl3. With the Lewis acid GaCl3 the zwitter ion [ReO2Cl2]+[GaCl4]? is formed. a = 1184.0(3), b = 829.2(2), c = 1100.8(2) pm, β = 112.98(1)°, P21/c.  相似文献   

9.
In the living cationic polymerization of isobutyl vinyl ether (IBVE) by the CH3CH (OiBu) OCOCH3 ( 1 )/EtAlCl2 initiating system in the presence of the added base in hexane at +40°C, the stability of the initiating system 1 /EtAlCl2, which form initiating species CH3CH (OiBu) derived from 1 , was investigated. In the presence of the Lewis base such as ethyl acetate or 1,4-dioxane, the active species was stable for 300 min even at +40°C in the absence of IBVE, and the living polymers were quantitatively obtained by adding IBVE. However, the active species was partly consumed by side reactions during the standing time for 60 min in the presence of a less basic additive such as ethyl benzoate, and about 50% of the active species was deactivated in the presence of methyl chloroacetate. Consequently, in the case of a less basic additive such as methyl chloroacetate (which was effective for the fast living polymerization), it can be seen that the careful selection of polymerization conditions was required. The living polymerization rate was dependent on the second order of EtAlCl2 concentration. EtAlCl2 induced the cleavage of 1 into CH3CH (OiBu) and EtAl?Cl2(OCOCH3), and the reactivity of CH3CH (OiBu) and propagating carbocation may be controlled by EtAl?Cl2(OCOCH3) with the aid of other EtAlCl2. Et1.5AlCl1.5 exists as a bimetallic complex of EtAlCl2 and Et2AlCl, and it is expected that the polymers having a bimodal molecular weight distribution will be obtained due to two kinds of counteranions coming from EtAlCl2 and Et2AlCl. However, in the cationic polymerization of IBVE by 1 /Et1.5AlCl1.5 in the presence of ethyl acetate, the living polymer exhibiting a unimodal and very narrow molecular weight distribution was obtained. Thereby, it was suggested that the counteranions, EtAl?Cl2(OCOCH3) and Et2Al?Cl(OCOCH3), exchange rapidly with each other. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
Zeolites are highly important heterogeneous catalysts. Besides Brønsted SiOHAl acid sites, also framework AlFR Lewis acid sites are often found in their H‐forms. The formation of AlFR Lewis sites in zeolites is a key issue regarding their selectivity in acid‐catalyzed reactions. The local structures of AlFR Lewis sites in dehydrated zeolites and their precursors—“perturbed” AlFR atoms in hydrated zeolites—were studied by high‐resolution MAS NMR and FTIR spectroscopy and DFT/MM calculations. Perturbed framework Al atoms correspond to (SiO)3AlOH groups and are characterized by a broad 27Al NMR resonance (δi=59–62 ppm, CQ=5 MHz, and η=0.3–0.4) with a shoulder at 40 ppm in the 27Al MAS NMR spectrum. Dehydroxylation of (SiO)3AlOH occurs at mild temperatures and leads to the formation of AlFR Lewis sites tricoordinated to the zeolite framework. Al atoms of these (SiO)3Al Lewis sites exhibit an extremely broad 27Al NMR resonance (δi≈67 ppm, CQ≈20 MHz, and η≈0.1).  相似文献   

11.
 A lead electrode was studied in 6 and 12 M H3PO4. Oxidation of a freshly polished electrode occurred in the −0.5 to −0.3 V vs. SCE range, and led to PbHPO4 growth on the electrode surface. The dissolution of this layer by electrochemical reduction occurred between −0.5 and −0.7 V. The influence of temperature (20 °C and 65 °C) was investigated and showed that the anodic and the cathodic peaks were increasing, and more markedly for the 12 M H3PO4. The ratio Q cathodic/Q anodic (Q=electrical charge flowing through the electrode) was equal or close to the unity at 20 °C and decreased as the temperature was increased. The influence of Cl, Br and I ions was also evaluated. The addition of Cl and Br predominantly led to Pb5(PO4)3Cl and Pb5(PO4)3Br, respectively, while I led to a mixture of PbI2 and PbHPO4. Received: 18 July 1999 / Accepted: 2 November 1999  相似文献   

12.
The kinetics of polymerization of acrylonitrile (AN) initiated by quinquevalent vanadium (V~(5+))-thiourea (TU) redox system has been investigated in aqueous nitric acid in the temperature range from 30 to 50℃. The polymerization rate (R_p) can be expressed as follows: In the copolymerization of acryionitrile with methyl acrylate (MA), the reactivity ratios were found to be 1.0 and 1.1, respectively. The experimental observations suggest that the initiating species is probably a complex consisting of a central ion of Lewis acid-VO_2~+ and the ligands of Lewis bases-acrylonitrile, thiourea, and nitrate anions, while the initiating system in lower concentration, the polymerization of acrylonitrile does not occur if the thiourea is acidified prior to its reaction with quinquevalent vanadium. This indicates that the primary radicals (or the monomeric radicals in the present article) are produced by associated thiourea rather than isothlourea.  相似文献   

13.
The photoreduction of trans-[Co(NH3)4Cl2]+, trans-[Co(en)2Cl2]+, [Co(dien)Cl3], [Co(trien)Cl2]+, and [Co(tetren)Cl]2+, ions has been studied using a low pressure Hg vapour lamp as light source (254 nm) in aqueous–organic solvents [0–30% (v/v) MeOH or 1,4-dioxane]. Quantum yields for CoII production by redox decomposition have been determined in all the cases, and increase considerably with the increase in concentration of MeOH or 1,4-dioxane in the binary solvent mixtures under investigation. A plot of log(quantum yield) versus the Grunwald–Winstein Parameter, Y, which is a measure of solvent ionizing power, shows that a different blend of general and specific solvent interacts with the solute. This kind of specific solvent interaction on the reactant/excited state has been analysed using multiple regression: viz. Krygowski–Fawcett and Kamlet–Taft equations. Reasons for the difference in reactivity with chelation are also discussed.  相似文献   

14.
From an NMR (1H) study of various systems chloroalkylgallium/Lewis bases, it appears that the four types of gallium compounds (ClnR3?nGa) form adducts with trialkylamines, trialkylphosphines, ethers and sulphides, and that in all cases the 1:1 complex seems to be the only existing one. Its stability mainly depends on the number of chlorine atoms bound to the gallium and on the nature of the donor site.  相似文献   

15.
The use of the solution redox species, [Os(bpy)2Cl2]+/0, [Os(bpy)2(MeIm)Cl]2+/+ and [Fe(CN)6]4−/3−, where bpy is 2,2-bipyridine and MeIm is N-methylimidazole, as electron mediators in the enzymatic reduction of oxygen by tyrosinase is investigated. Co-immobilization of both enzyme and an osmium redox mediator in a hydrogel on glassy carbon electrodes results in a biosensor for the ‘reagentless’ addressing of enzyme activity, consuming only oxygen present in solution. Immobilized enzyme inhibition biosensors can thus be constructed for the detection of tyrosinase inhibitors, such as sodium azide, using this approach. The enzyme inhibition biosensor can detect levels of azide as low as 5 × 10−6 mol dm−3 in solution and may be useful in environmental monitoring applications and as an early warning poison sensor.  相似文献   

16.
Herein, we extend our “combined electrochemical–frustrated Lewis pair” approach to include Pt electrode surfaces for the first time. We found that the voltammetric response of an electrochemical–frustrated Lewis pair (FLP) system involving the B(C6F5)3/[HB(C6F5)3]? redox couple exhibits a strong surface electrocatalytic effect at Pt electrodes. Using a combination of kinetic competition studies in the presence of a H atom scavenger, 6‐bromohexene, and by changing the steric bulk of the Lewis acid borane catalyst from B(C6F5)3 to B(C6Cl5)3, the mechanism of electrochemical–FLP reactions on Pt surfaces was shown to be dominated by hydrogen‐atom transfer (HAT) between Pt, [Pt?H] adatoms and transient [HB(C6F5)3] ? electrooxidation intermediates. These findings provide further insight into this new area of combining electrochemical and FLP reactions, and proffers additional avenues for exploration beyond energy generation, such as in electrosynthesis.  相似文献   

17.
Redox‐inactive metal ions are one of the most important co‐factors involved in dioxygen activation and formation reactions by metalloenzymes. In this study, we have shown that the logarithm of the rate constants of electron‐transfer and C−H bond activation reactions by nonheme iron(III)–peroxo complexes binding redox‐inactive metal ions, [(TMC)FeIII(O2)]+‐Mn + (Mn +=Sc3+, Y3+, Lu3+, and La3+), increases linearly with the increase of the Lewis acidity of the redox‐inactive metal ions (ΔE ), which is determined from the gzz values of EPR spectra of O2.−‐Mn + complexes. In contrast, the logarithm of the rate constants of the [(TMC)FeIII(O2)]+‐Mn + complexes in nucleophilic reactions with aldehydes decreases linearly as the ΔE value increases. Thus, the Lewis acidity of the redox‐inactive metal ions bound to the mononuclear nonheme iron(III)–peroxo complex modulates the reactivity of the [(TMC)FeIII(O2)]+‐Mn + complexes in electron‐transfer, electrophilic, and nucleophilic reactions.  相似文献   

18.
Morpholine as Ambident Ligand The reaction of MeInCl2 with Li‐morpholinate [Li(Morph)] at 20 °C in THF gave after work‐up and recrystallization from diglyme the salt [Li(Diglyme){In3Me2Cl4(Morph)4}]·Diglyme ( 1 ). The treatment of the reaction mixture of MesInCl2/Li(Morph) with wet THF yield as only isolated compound the coordination polymer [Li6Cl6(HMorph)3] ( 2 ). Under similar conditions the reaction of InCl3 with Li(Morph) led after work‐up in wet THF to [Li(Diglyme)2][InCl4(HMorph)2] ( 3 ). 1 – 3 were characterized by NMR and IR spectroscopy as well as by X‐ray analysis. According to this, 1 contains the trinuclear anion [In3Me2Cl4(Morph)4]? in which one of the morpholinate ligands is coordinated via N atom to the In3+ ions, while the O atom belongs to the coordination sphere of the Li+ ion. In 2 , LiCl forms a hexagonal heteroprismn, in which the morpholine molecules are responsible for a 3d network via coordination of both Lewis‐basic heteroatoms. 3 contains trans‐[InCl4(Hmorph)2]? ions, connected by hydrogen bonding along [011].  相似文献   

19.
The effects of nonpolar and polar solvents on the Qx and Qy energies of bacteriochlorophyll (BChl) a and bacteriopheophytin (BPhe) a were examined by electronic absorption spectroscopy. All of the four different energies exhibited a linear dependence on R(n) = (n2 - l)/(n2+ 2), where n is the refractive index of the solvent, in both nonpolar and polar solvents. The energy of each state of both pigments could be expressed as v = -dR(n) + e (in cm-1) where coefficient d was related to the dispersive interaction between the solute and the solvent molecules. A theory developed by Nagae showed that coefficient d originates from the quantum-mechanical fluctuation of the multipole moments of the solute, in terms of which the following characteristics of the observed d values were explained: (1) In all of the four cases of the Qx, and Qy energies of both BChl a and BPhe a, the d values for the polar solvents were smaller than those for the non-polar solvents. (2) In both nonpolar and polar solvents, the d value of BChl a was larger than that of BPhe a in the Qy energy, whereas the d value of BPhe a was larger than that of BChl a in the Qx energy. (3) The d value of the Qx energy was larger than that of the Qy, energy for either case of BChl a or BPhe a.  相似文献   

20.
A theoretical investigation on the rates of electron-transfer processes QI + QII → QI + QII and QI + QII → QI + Q2−II was carried out by using the Marcus theory of long-range electron transfer in solution. The molecular reorganizational parameter λ, the free-energy change ΔG0 for the overall reaction, and the electronic matrix element HDA for these two processes were calculated from the INDO-optimized geometries of molecules QI, QII, and histidine. QI and QII are plastoquinones (PQ) which are hydrogen-bonded to a histidine each, and the two histidines may or may not be coordinated to a Fe2+ ion. The plastoquinone representing QI is additionally flanked by two peptide fragments. Each of the species (Pep)2QI · His and His · QII has been considered to be immersed in a dielectric continuum that represents the surrounding molecules and protein folds. INDO calculations confirm the standard reduction potential for the first process (calculated 0.127 V; observed 0.13 V) and predict a midpoint potential of 0.174 V for the second process at 300 K at pH 7 (experimental value remains uncertain but is known to be close to 0.13 V). The plastoquinone fragment carries almost all the net charge (about 95.7%) in [PQ · His] and the net charge in [PQH · His]. The electron is transferred effectively from the plastoquinone part of [(Pep)2QI · His] to the plastoquinone moiety of QII · His in the first step and to the plastoquinone fragment of HisH+ · QII in the second step. Therefore, we made use of the formula for the rate of through-space electron transfer from QI to QII (and to QII). The plastoquinones are, of course, electronically coupled to histidines, and the transfer is, in reality, through the molecular bridge consisting of histidines and also Fe2+. The through-bridge effect is inherent in our calculation of ΔG0, HDA, and the reorganization parameter λ. We investigated the correlation between half-times for the transfer and (D−1opD−1s), where Dop and Ds are, respectively, optical and static dielectric constants of the condensed phase in the vicinity of the plastoquinones. We found that with reasonable values of Dop (2.6) and Ds (8.5) the experimental rates are adequately explained in terms of transfers from the plastoquinone moiety of QI to that of QII. The t1/2 values calculated for the two processes are 247 and 472 μs in the absence of Fe2+ and 134 and 181 μs in the presence of Fe2+. These are in good agreement with the observed values which are ≈ 100 and ≈ 200 μs when Fe2+ is present in the matrix and which are known to be almost twice as large when the Fe2+ is evicted from the matrix. The present work also shows that the Marcus-Hush theory of long-range electron transfers can be successfully applied to the investigation of processes occurring in a semirigid condensed phase like the thylakoid membrane region. © 1997 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号