首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nonspherical cages in inclusion compounds can result in non‐uniform motion of guest species in these cages and anisotropic lineshapes in NMR spectra of the guest. Herein, we develop a methodology to calculate lineshape anisotropy of guest species in cages based on molecular dynamics simulations of the inclusion compound. The methodology is valid for guest atoms with spin 1/2 nuclei and does not depend on the temperature and type of inclusion compound or guest species studied. As an example, the nonspherical shape of the structure I (sI) clathrate hydrate large cages leads to preferential alignment of linear CO2 molecules in directions parallel to the two hexagonal faces of the cages. The angular distribution of the CO2 guests in terms of a polar angle θ and azimuth angle ? and small amplitude vibrational motions in the large cage are characterized by molecular dynamics simulations at different temperatures in the stability range of the CO2 sI clathrate. The experimental 13C NMR lineshapes of CO2 guests in the large cages show a reversal of the skew between the low temperature (77 K) and the high temperature (238 K) limits of the stability of the clathrate. We determine the angular distributions of the guests in the cages by classical MD simulations of the sI clathrate and calculate the 13C NMR lineshapes over a range of temperatures. Good agreement between experimental lineshapes and calculated lineshapes is obtained. No assumptions regarding the nature of the guest motions in the cages are required.  相似文献   

2.
Owing to a stable and porous cage structure, natural gas hydrates can store abundant methane and serve as a potentially natural gas resource. However, the microscopic mechanism of how hydrate crystalline grows has not been fully explored, especially for the structure containing different guest molecules. Hence, we adopt density functional theory (DFT) to investigate the fusion process of structure I hydrates with CH4/C2H6 guest molecules from mono-cages to triple-cages. We find that the volume of guest molecules affects the stabilities of large (51262, L) and small (512, s) cages, which are prone to capture C2H6 and CH4, respectively. Mixed double cages (small cage and large cage) with the mixed guest molecules have the highest stability and fusion energy. The triangular triple cages exhibit superior stability because of the three shared faces, and the triangular mixed triple cages (large-small-large) structure with the mixed guest molecules shows the highest stability and fusion energy in the triple-cage fusion process. These results can provide theoretical insights into the growth mechanism of hydrates with other mono/mixed guest molecules for further development and application of these substances.  相似文献   

3.
4.
基于密度泛函理论研究了非对称双笼型单分子溶剂化电子e-@C24F22(NH)2C20F18(1、2 和3), 进一步展示了我们提出的一种新型电子异构体——(非对称型的)笼间电子迁移异构体. 1、2 和3 具有显著不同的偶极矩. 由于都存在两个氧化还原中心, 它们属于一种非金属型的新型Robin-Day II-III 分子. 对于1 和3, 额外电子分别定域在C24F22和C20F18笼里(Robin-Day II); 对于2, 额外电子则离域于两个非对称的笼中(Robin-Day III). 值得注意的是, 在y 轴方向上外加-0.0004和-0.0008 a.u.的临界电场(Ec)时可分别使1 的额外电子从C24F22笼中部分和全部地迁移到C20F18笼中, 即实现从1 到2 再到3 的转化; 当Ec为0.0004 a.u.时, 3 的额外电子从C20F18笼中全部迁移到了C24F22笼中, 即3 未经过2 直接转化成了1.  相似文献   

5.
The sI type methane clathrate hydrate lattice is formed during the process of nucleation where methane gas molecules are encapsulated in the form of dodecahedron (5(12)CH(4)) and tetrakaidecahedron (5(12)6(2)CH(4)) water cages. The characterization of change in the vibrational modes which occur on the encapsulation of CH(4) in these cages plays a key role in understanding the formation of these cages and subsequent growth to form the hydrate lattice. In this present work, we have chosen the density functional theory (DFT) using the dispersion corrected B97-D functional to characterize the Raman frequency vibrational modes of CH(4) and surrounding water molecules in these cages. The symmetric and asymmetric C-H stretch in the 5(12)CH(4) cage is found to shift to higher frequency due to dispersion interaction of the encapsulated CH(4) molecule with the water molecules of the cages. However, the symmetric and asymmetric O-H stretch of water molecules in 5(12)CH(4) and 5(12)6(2)CH(4) cages are shifted towards lower frequency due to hydrogen bonding, and interactions with the encapsulated CH(4) molecules. The CH(4) bending modes in the 5(12)CH(4) and 5(12)6(2)CH(4) cages are blueshifted, though the magnitude of the shifts is lower compared to modes in the high frequency region which suggests bending modes are less affected on encapsulation of CH(4). The low frequency librational modes which are collective motion of the water molecules and CH(4) in these cages show a broad range of frequencies which suggests that these modes largely contribute to the formation of the hydrate lattice.  相似文献   

6.
Flue gas desulfurization is crucial for both human health and ecological environments. However, developing efficient SO2 adsorbents that can break the trade-off between adsorption capacity and selectivity is still challenging. In this work, a new type of fluorinated anion-pillared metal–organic frameworks (APMOFs) with a pillar-cage structure is fabricated through pillar-embedding into a highly porous and robust framework. This type of APMOFs comprises smaller tetrahedral cages and larger icosahedral cages interconnected by embedded [NbOF5]2− and [TaOF5]2− anions acting as pillars. The APMOFs exhibits high porosity and density of fluorinated anions, ensuring exceptional SO2 adsorption capacity and ultrahigh selectivity for SO2/CO2 and SO2/N2 gas mixtures. Furthermore, these two structures demonstrate excellent stability towards water, acid/alkali, and SO2 adsorption. Cycle dynamic breakthrough experiments confirm the excellent separation performance of SO2/CO2 gas mixtures and their cyclic stability. SO2-loaded single-crystal X-ray diffraction, Grand canonical Monte Carlo (GCMC) simulations combined with density functional theory (DFT) calculations reveal the preferred adsorption domains for SO2 molecules. The multiple-site host–guest and guest-guest interactions facilitate selective recognition and dense packing of SO2 in this hybrid porous material. This work will be instructive for designing porous materials for flue gas desulfurization and other gas-purification processes.  相似文献   

7.
To understand host–guest interactions of hydrocarbon clathrate hydrates, we investigated the crystal structure of simple and binary clathrate hydrates including butane (n‐C4H10 or iso‐C4H10) as the guest. Powder X‐ray diffraction (PXRD) analysis using the information on the conformation of C4H10 molecules obtained by molecular dynamics (MD) simulations was performed. It was shown that the guest n‐C4H10 molecule tends to change to the gauche conformation within host water cages. Any distortion of the large 51264 cage and empty 512 cage for the simple iso‐C4H10 hydrate was not detected, and it was revealed that dynamic disorder of iso‐C4H10 and gauchenC4H10 were spherically extended within the large 51264 cages. It was indicated that structural isomers of hydrocarbon molecules with different van der Waals diameters are enclathrated within water cages in the same way owing to conformational change and dynamic disorder of the molecules. Furthermore, these results show that the method reported herein is applicable to structure analysis of other host–guest materials including guest molecules that could change molecular conformations.  相似文献   

8.
可燃冰矿藏中气体成分非常复杂,通过谱学分析对水合物样品成分进行指认具有重要意义.基于B97-D/6-311++G(2d,2p)的密度泛函理论(DFT)计算,我们系统地探索了构成水合物的两种标准水笼(51262和51264)包络十八种不同烷烃客体分子的稳定性. 从计算结果可以看出,除了3-甲基戊烷和2,3-二甲基丁烷两个烷烃客体分子,其它16个烷烃客体分子都可以被容纳在51262笼中;但是与51262笼不同,十八种烷烃客体分子都可以被容纳在尺寸较大的51264笼中. 同时,我们也模拟了五种直链烷烃和四种环状烷烃在51262和51264笼中相应的谱学特征,从拉曼谱图上可以看出,随着碳原子数量的增多,直链烷烃客体分子C―H键伸缩振动区的多数拉曼谱带向高波数移动,而环状烷烃客体分子C―H键伸缩振动区的拉曼谱带则向低波数移动. 这些结果为实验上通过拉曼谱测量指认水合物矿藏的成分提供理论参考.  相似文献   

9.
This paper presents a systematic molecular simulation study of the heterogeneous crystal growth of methane hydrate sII from supersaturated aqueous methane solutions. The growth of sII hydrate on the [001] crystallographic face is achieved through utilization of a recently proposed methodology, and rates of crystal growth of 1 A/ns were sustained for the molecular models and specific conditions employed in this work. Characteristics of the crystals grown as well as properties and structure of the interface are examined. Water cages with a 5(12)6(3) arrangement, which are improper to both sI and sII structures, are identified during the heterogeneous growth of sII methane hydrate. We show that the growth of a [001] face of sII hydrate can produce an sI crystalline structure, confirming that cross-nucleation of methane hydrate structures is possible. Defects consisting of two methane molecules trapped in large 5(12)6(4) cages and water molecules trapped in small and large cages are observed, where in one instance we have found a large 5(12)6(4) cage containing three water molecules.  相似文献   

10.
We discover new structure II (sII) hydrate forming agents of two C4H8O molecules (2-methyl-2-propen-1-ol and 2-butanone) and report the abnormal structural transition of binary C4H8O+CH4 hydrates between structure I (sI) and sII with varying temperature and pressure conditions. In both (2-methyl-2-propen-1-ol+CH4) and (2-butanone+CH4) systems, the phase boundary of the two different hydrate phases (sI and sII) exists at the slope change of the phase-equilibrium curve in the semi-logarithmic plots. We confirm the crystal structures of two hydrates synthesized at low (278 K and 6 MPa) and high (286 K and 15 MPa) temperature and pressure conditions by using high-resolution powder diffraction and Raman spectroscopy. 2-Methyl-2-propen-1-ol and 2-butanone can occupy the large cages of sII hydrate at low temperature and pressure conditions; however, they are excluded from the hydrate phase at high temperature and pressure conditions, resulting in the formation of pure sI CH4 hydrate.  相似文献   

11.
Interest in describing clathrate hydrate formation mechanisms spans multiple fields of science and technical applications. Here, we report findings from multiple molecular dynamics simulations of spontaneous methane clathrate hydrate nucleation and growth from fully demixed and disordered two-phase fluid systems of methane and water. Across a range of thermodynamic conditions and simulation geometries and sizes, a set of seven cage types comprises approximately 95% of all cages formed in the nucleated solids. This set includes the ubiquitous 5(12) cage, the 5(12)6(n) subset (where n ranges from 2-4), and the 4(1)5(10)6(n) subset (where n also ranges from 2-4). Transformations among these cages occur via water pair insertions/removals and rotations, and may elucidate the mechanisms of solid-solid structural rearrangements observed experimentally. Some consistency is observed in the relative abundance of cages among all nucleation trajectories. 5(12) cages are always among the two most abundant cage types in the nucleated solids and are usually the most abundant cage type. In all simulations, the 5(12)6(n) cages outnumber their 4(1)5(10)6(n) counterparts with the same number of water molecules. Within these consistent features, some stochasticity is observed in certain cage ratios and in the long-range ordering of the nucleated solids. Even when comparing simulations performed at the same conditions, some trajectories yield swaths of multiple adjacent sI unit cells and long-range order over 5 nm, while others yield only isolated sI unit cells and little long-range order. The nucleated solids containing long-range order have higher 5(12)6(2)/5(12) and 5(12)6(3)/4(1)5(10)6(2) cage ratios when compared to systems that nucleate with little long-range order. The formation of multiple adjacent unit cells of sI hydrate at high driving forces suggests an alternative or addition to the prevailing hydrate nucleation hypotheses which involve formation through amorphous intermediates.  相似文献   

12.
Non-covalent interactions are important for directing protein folding across multiple intermediates and can even provide access to multiple stable structures with different properties and functions. Herein, we describe an approach for mimicking this behavior in the self-assembly of metal–organic cages. Two ligands, the bend angles of which are controlled by non-covalent interactions and one ligand lacking the above-mentioned interactions, were synthesized and used for self-assembly with Pd2+. As these weak interactions are easily broken, the bend angles have a controlled flexibility giving access to M2( L1 )4, M6( L2 )12, and M12( L2 )24 cages. By controlling the self-assembly conditions this process can be directed in a stepwise fashion. Additionally, the multiple endohedral hydrogen-bonding sites on the ligand were found to play a role in the binding and discrimination of neutral guests.  相似文献   

13.
A new series of N‐heterocyclic carbene (NHC) ligand precursors ( 1 and 2 ) with their [Ag(I)(NHC)2]PF6 complexes ( 3 and 4 ) and [ClAu(I)(NHC)] complexes ( 5 and 6 ) are reported. Complexes 5 and 6 were synthesized via transmetalation reaction using either 3 or 4 and AuCl(SMe2) as reactants, respectively. All the synthesized compounds were fully characterized using elemental analyses and Fourier transform infrared, 1H NMR and 13C NMR spectroscopies. In the crystal structures of 3 , 5 and 6 , the Ag(I) and Au(I) ions are in a linear geometry. The entire structure of 3 is stabilized by significant π–π interactions, while the structures of 5 and 6 are stabilized with the presence of aurophilic interactions between the adjacent Au(I) ions as well as CH–π or π–π interactions. From photoluminescence studies, complexes 5 and 6 show dual‐emission characteristics. The higher‐energy fluorescence originates from 1XLCT mixed with 1MLCT, while the lower‐energy phosphorescence is ascribed to 3XLCT and 3MLCT with small contribution of 3ILCT, as evidenced by density functional theory (DFT) and time‐dependent DFT calculations of the modelled molecules.  相似文献   

14.
15.
The trinuclear chromium(III) complex [Cr3O(CH3CO2)6(L)(H2O)2] (where L is the monoanion of the flavonoid naringenin) was synthesized and characterized. Density functional theory (DFT) calculations and quantum theory of atoms in molecules (QTAIM) analysis show that the flavonoid binds to CrIII as an O,O-bidentate ligand via the 5-hydroxy and 4-oxo groups. Reactions with 2,2-diphenyl-1-picrylhydrazyl (DPPH) indicate that the antiradical activity of this flavonoid-metal complex is enhanced in comparison with uncoordinated naringenin.  相似文献   

16.
Three macrocyclic hexaamines 1 , 2 , and 4 , and the acyclic tetraamine 5 and hexaamine 6 have been synthesized. The hexaamines 1 , 2 , and 4 are ditopic coreceptor molecules containing two triamine subunits which may bind anionic substrates when protonated. The stability constants of the complexes between the protonated forms of the macrocyclic polyamines and terminal dicarboxylates ?O2C?(CH2)m- CO2? as well as amino-acid and dipeptide dicarboxylates have been determined by pH-metric measurements. Around neutral pH, 1 and 2 give mainly complexes of the fully protonated species 1 ·6H+ and 2 ·6H+, whereas 4 yields predominantly complexes of 4 ·5H+ and 4 ·4H+. The stability sequences of the complexes formed indicate preferential binding of the dianionic substrates whose length is compatible with the separation of the triammonium binding subunits in the protonated receptor molecules 1 , 2 , and 4 . This selectivity pattern corresponds to a process of linear molecular recognition based on ditopic binding between the two ammonium subunits of the coreceptor and the terminal carboxylates of the substrate of complementary length. The complexes of the acyclic ligands 5 and 6 are much weaker and much less selective, indicating a marked macrocyclic effect on both stability and selectivity of binding, i.e. on recognition.  相似文献   

17.
A polyoxometalate of the Keggin structure substituted with RuIII, 6Q5[RuIII(H2O)SiW11O39] in which 6Q=(C6H13)4N+, catalyzed the photoreduction of CO2 to CO with tertiary amines, preferentially Et3N, as reducing agents. A study of the coordination of CO2 to 6Q5[RuIII(H2O)SiW11O39] showed that 1) upon addition of CO2 the UV/Vis spectrum changed, 2) a rhombic signal was obtained in the EPR spectrum (gx=2.146, gy=2.100, and gz=1.935), and 3) the 13C NMR spectrum had a broadened peak of bound CO2 at 105.78 ppm (Δ1/2=122 Hz). It was concluded that CO2 coordinates to the RuIII active site in both the presence and absence of Et3N to yield 6Q5[RuIII(CO2)SiW11O39]. Electrochemical measurements showed the reduction of RuIII to RuII in 6Q5[RuIII(CO2)SiW11O39] at ?0.31 V versus SCE, but no such reduction was observed for 6Q5[RuIII(H2O)SiW11O39]. DFT‐calculated geometries optimized at the M06/PC1//PBE/AUG‐PC1//PBE/PC1‐DF level of theory showed that CO2 is preferably coordinated in a side‐on manner to RuIII in the polyoxometalate through formation of a Ru? O bond, further stabilized by the interaction of the electrophilic carbon atom of CO2 to an oxygen atom of the polyoxometalate. The end‐on CO2 bonding to RuIII is energetically less favorable but CO2 is considerably bent, thus favoring nucleophilic attack at the carbon atom and thereby stabilizing the carbon sp2 hybridization state. Formation of a O2C–NMe3 zwitterion, in turn, causes bending of CO2 and enhances the carbon sp2 hybridization. The synergetic effect of these two interactions stabilizes both Ru–O and C–N interactions and probably determines the promotional effect of an amine on the activation of CO2 by [RuIII(H2O)SiW11O39]5?. Electronic structure analysis showed that the polyoxometalate takes part in the activation of both CO2 and Et3N. A mechanistic pathway for photoreduction of CO2 is suggested based on the experimental and computed results.  相似文献   

18.
The mass-selected infrared photodissociation (IRPD) spectroscopy was utilized to investigate the interactions of cationic cobalt with carbon dioxide molecules. Quantum chemical calculations were performed on the [Co(CO2)n]+ clusters to identify the structures of the low-lying isomers and to assign the observed spectral features. All the [Co(CO2)n]+(n=2-6) clusters studied here show resonances near the CO2 asymmetric stretch of free CO2 molecule. Experimental and calculated results indicate that the CO2 molecules are weakly bound to the Co+ cations in an end-on con guration via a charge-quadrupole electrostatic interaction. The present IRPD spectra of [Co(CO2)n]+ clusters have been compared to those of Ar-tagged species ([Co(CO2)n]+-Ar), which would provide insights into the tagging effect of rare gas on the weakly-bounded clusters.  相似文献   

19.
Graphene oxide (GO) membranes holds great potential for high-performance CO2 capture. Aiming at enhancing the CO2 separation performance and structural stability of GO membranes, functionalizing GO channels with metal ions confers a promising strategy. In this study, we reported the fabrication of metal ion-incorporated GO membranes with remarkably improved CO2/N2 separation performance. The metal ions within GO channels contribute to facilitating CO2 transport, decreasing N2 solubility, hindering N2 diffusion, and form multiple interactions with GO nanosheets. After introducing Mg2+ ions, the CO2/N2 separation factor of GO membrane is remarkably increased from 4 to 48.8 with the CO2 permeance increases 1.5 times. Moreover, the separation performance of the GO-Mg2+ membranes shows an excellent long-term stability owing to the structural robustness. This study could provide insights into the regulation of the microstructure of metal ion-functionalized GO membranes for highly selective transport of specific molecules.  相似文献   

20.
A series of 2-(2,3 and 4-substituted-phenyl)-1,2-benzisoselenazol-3(2H)-one molecules were theoretically investigated by the use of density functional theory (DFT) calculations at the B3LYP/6-311++G∗∗ level of the theory. The substituents studied in this work are X = H; CH3; NH2; OH; OCH3; F, Cl; Br; NO2; CN; COCH3; CO2H; CO2Me; SH; BH2. We have selected these functional groups to be placed in the 2, 3 and 4 positions with relation to the benzisoselenazol moiety in order to show the effect of these structural modifications on the electronic properties of the molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号