首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kansuinine A is a macrocyclic jatrophane diterpene isolated from the plant Euphorbia kansui Liou. It exhibits many pharmacological activities including cytoxic, antitumor, antiallergic and proinflammatory effects. In the present study, a simple and sensitive LC–MS/MS method was established and validated for the determination of kansuinine A in rat plasma. After methanol-mediated protein precipitation, chromatographic separation was achieved on an Acquity BEH C18 column (2.1 × 100 mm, 1.7 μm) using acetonitrile and 0.1% formic acid in water as mobile phase by gradient elution. Kansuinine A and IS were quantified in negative multiple reaction monitoring mode with ion transitions at m/z 731.1–693.2 for kansuinine A and m/z 723.2–623.1 for IS. The method showed excellent linearity over the range 1–500 ng/ml. The intra- and inter-day precisions (relative standard deviation) were 2.13–4.28 and 3.83–7.67%, respectively, whereas accuracy (relative error) ranged from −4.17 to 3.73%. The extraction recovery, stability and matrix effect met the requirement of the regulations issued by the US Food and Drug Administration. The validated method was successfully applied to the pre-clinical pharmacokinetic study of kansuinine A in rats after oral administration (20 mg/kg) and intravenous administration (2 mg/kg). This study provides valuable reference for the further study of E. kansui liou, especially for the drug development and clinical application of kansuinine A.  相似文献   

2.
A specific and reliable LC–MS/MS method for the determination of rosamultin in rat plasma was validated. Plasma samples were prepared with protein precipitation method, and chromatographic separation was performed on a Thermo C18 analytical column (4.6 mm × 50 mm, 3.0 μm). The mass spectrometry (MS) analysis was conducted in positive SRM mode for the transitions of m/z 673.2 → 511.1 for rosamultin and m/z 601.1 → 330.9 for IS. The method validation was conducted over the calibration range of 1.0–500 ng/mL with the precision ≤11.03% and accuracy within ±14.64%. The assay was applied to the pharmacokinetic study after oral administration of rosamultin at a dose of 20 mg/kg in rats.  相似文献   

3.
Ginsenoside Rh3 (GRh3) is a bacterial metabolite of ginsenoside Rg5, which is the main component of hot-processed ginseng. A simple, efficient and sensitive method was developed and validated for the determination of GRh3 in rat plasma by LC–tandem mass spectrometry. After protein precipitation with methanol/acetonitrile (1:1, vol/vol) using propranolol as the internal standard, the target analytes were separated on an XDB C18 column, with methanol containing 0.1% formic acid and water containing 0.1% formic acid used as mobile phases for gradient elution. Mass spectrometry was performed in electrospray ion source–positive ion mode and multiple reaction monitoring mode, monitoring the transitions m/z 622.5 → 425.5 and m/z 260.1 → 116.1 for GRh3 and internal standard, respectively. The concentration range of GRh3 was 20–20,000 ng/mL and the correlation coefficient (r2) was greater than 0.99. The accuracy error and relative standard deviation were below 15%. The extraction recovery and matrix effect were 74.2% to 78.7% and 96.9% to 108.4%, respectively. Under different conditions, GRh3 was stable in the range of 1.8%–8.7%. This method has been successfully applied to study the pharmacokinetics of GRh3 with an oral dose of 10.0 mg/kg and an intravenous dose of 2.0 mg/kg in rats, respectively. The absolute bioavailability of GRh3 was 37.6%.  相似文献   

4.
As a traditional Chinese medicine, Marsdenia tenacissima (Roxb.) Wight et Arn. plays an indispensable role in clinical practice owing to its specific efficacy in treating malignant tumors, leukocythemia, cystitis and asthma. This study aimed to establish a novel and scientific LC–MS/MS approach to simultaneously determine tenacissoside B, H, G and I, caffeic acid, cryptochlorogenic acid, chlorogenic acid and neochlorogenic acid from M. tenacissima extract within the rat plasma samples. Digoxin was used as the internal reference. All determinations were carried out using the Eclipse Plus C18 column, and water (containing 0.1% formic acid) was used as the mobile phase A, while acetonitrile was the mobile phase B for gradient elution. The UPLC methods were validated, including calibration curves, accuracy, precision, stability and recovery of the total eight analytes, in accordance with the requirements for biopharmaceutical analysis. Moreover, the proposed approach was also used in comprehensive pharmacokinetic research on those eight analytes in rats following M. tenacissima extract gavage. According to the pharmacokinetic parameters, tenacissoside B, I, H and G are the long-acting and primary bioactive constituents in M. tenacissima extract, with long mean residence times and high concentrations. Our findings shed light on the absorption mechanism and provide significant information for the clinical application of M. tenacissima.  相似文献   

5.
Poloxamer (PL)188 is a commonly used pharmaceutical excipient with unique physicochemical properties. In this study, an MSALL quantitative method for the determination of PL188 in rat plasma by UHPLC–Q-TOF/MS was developed and validated. PL188 was analyzed on PLRP-S reversed-phase column (50 × 4.6 mm, 8 μm, 1,000 Å) with mobile phase 0.1% formic acid–water and 0.1% formic acid in acetonitrile–isopropanol (2:3, v/v). The liner range was 0.1–10.0 μg/ml. A pharmacokinetic study was performed on rats at a dose of 5 mg/kg by intravenous injection. The pharmacokinetic parameters of intravenous injection were as follows: half-life was 2.0 ± 1.1 h, volume of distribution was 5.1 ± 3.2 L/kg, area under the concentration–time curve was 3.0 ± 0.6 μg/L h and clearance was 1.7 ± 0.3 L/h/kg. The results indicated that PL188 could be rapidly distributed to tissues with a high clearance rate. This study can provide a good reference for the further study of PL188.  相似文献   

6.
A simple and sensitive ultra-high-performance liquid chromatography tandem mass spectrometric method was developed and validated for the determination of foretinib in rat plasma. The analyte and internal standard were extracted from the bio-samples with acetonitrile and then separated on an Acquity UPLC BEH C18 column (50 × 2.1 mm, 1.7 μm) using 0.1% formic acid aqueous and acetonitrile as mobile phase, at a flow rate of 0.4 ml/min. The mass detection was performed in positive selected reaction monitoring mode with precursor-to-product transitions at m/z 317.1 > 128.1 for foretinib and m/z 502.2 > 323.1 for internal standard. The assay was demonstrated to be linear in the concentration range of 0.5–1000 ng/ml, with correlation coefficient >0.999. The mean extraction recovery of foretinib from rat plasma was within the range of 84.55–88.09%, while the matrix effect was in the range of 88.56–99.21%. The intra- and inter-day precisions were <12.95% and the accuracy ranged from −7.55 to 8.57%. Foretinib was stable in rat plasma under the tested storage conditions. The validated assay was successfully applied to the pharmacokinetic study of foretinib in the rats. The results revealed that foretinib showed moderate elimination half-life, low clearance and dose-independent pharmacokinetic profiles inrats.  相似文献   

7.
A novel, simple and sensitive method for the determination of Lusutrombopag in rat plasma using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was developed and validated. The determination was performed on an API4000 triple quadrupole mass spectrometry in the multiple reaction monitoring mode using the respective [M+H]+ ions m/z 593.1 → 272.3 for Lusutrombopag. The limit of detection was 0.5 ng/mL, and the lower limit of quantification was 2.0 ng/mL in rat plasma. Good linearity was obtained over the range of 2.0–150.0 ng/mL and the correlation coefficient was found to be 0.9998. The intra and inter-day precisions were found to be 3.8–6.9% and 6.8–10.5%, respectively. The intra and inter-day accuracy derived from QC samples was found to be 2.5–4.9% and 5.5–7.2%, respectively. The analyte was stable under various conditions (at room temperature, during freeze-thaw, in the autosampler and under deep-freeze conditions). The F-test and t-test at 95% confidence level were subjected on data for statistical analysis. The developed method was successfully applied to the pharmacokinetic study in rats.  相似文献   

8.
Polyphyllin II, a major steroidal saponin isolated from Paris polyphylla, exhibits significant pharmacological activities. In this study, a rapid and sensitive liquid chromatography–tandem mass spectrometry method was established and validated for the determination of polyphyllin II in plasma. Polyphyllin II and polyphyllin VII (internal standard) were separated on a Waters Acquity™ HSS T3 column and the mass analysis was performed in a triple quadrupole mass spectrometer equipped with an electrospray ionization ion source. Results showed that the method was sensitive (lower limit of quantitation 0.5 ng/ml), precise (<15%) and linear in the range of 0.5–500 ng/ml (r > 0.99). Interestingly, the sensitivity in current study was ~10 times higher than that in the previous study. The results of the pharmacokinetic study of polyphyllin II in rats suggested that polyphyllin II was poorly absorbed into blood and reached its highest concentration at ~3.67–5.00 h with a slow elimination half-life of 8.34–13.37 h. The bioavailability was 6.1–8.2%. The results indicated that the absorption of polyphyllin II may primarily occur via passive diffusion in rats. This study provides valuable information that can be used as a reference for the pharmacokinetic investigation of other steroidal saponins.  相似文献   

9.
Ziritaxestat is a first-in-class autotoxin inhibitor. The purpose of this study was to develop a liquid chromatography/electrospray ionization tandem mass spectrometric (LC–MS/MS) method for the determination of ziritaxestat in rat plasma. The plasma sample was deproteinated using acetonitrile and then separated on an Acquity BEH C18 column with water containing 0.1% formic acid and acetonitrile as mobile phase, which was delivered at 0.4 ml/min. Ziritaxestat and the internal standard (crizotinib) were quantitatively monitored with precursor-to-product transitions of m/z 589.3 > 262.2 and m/z 450.1 > 260.2, respectively. The total running time was 2.5 min. The method showed excellent linearity over the concentration range 0.5–2000 ng/ml, with correlation coefficient >0.9987. The extraction recovery was >82.09% and the matrix effect was not significant. Inter- and intra-day precisions (RSD) were <11.20% and accuracies were in the range of −8.50–7.45%. Ziritaxestat was demonstrated to be stable in rat plasma under the tested conditions. The validated LC–MS/MS method was successfully applied to study the pharmacokinetic profiles of ziritaxestat in rat plasma after intravenous and oral administration. Pharmacokinetic results demonstrated that ziritaxestat displayed a short half-life (~3 h) and low bioavailability (20.52%).  相似文献   

10.
A reliable and sensitive UPLC–MS/MS method was first established and validated for the simultaneous determination of seven active ingredients of Yaobitong capsule in rat plasma: ginsenoside Rg1, ginsenoside Rb1, osthole, tetrahydropalmatine, paeoniflorin, albiflorin, and ferulic acid. And this method was further applied for the integrated pharmacokinetic study of Yaobitong capsule in rats after oral administration. Plasma samples (100 μL) were precipitated with 300 μL of methanol using carbamazepine as internal standard. Chromatographic separation was achieved using an Aquity UPLC BEH C18 column (100 × 2.1 mm, 1.7 μm), with the mobile phase consisting of 0.1% formic acid and acetonitrile. The method was validated using a good linear relationship (r ≥ 0.991), and the lower limit of quantification of the analytes ranged from 0.5 to 40 ng/mL. In the integrated pharmacokinetic study, the weight coefficient was calculated by the ratio of AUC0–∞ of each component to the total AUC0–∞ of the seven active ingredients. The integrated pharmacokinetic parameters Cmax, Tmax, and t1/2 were 81.54 ± 9.62 ng/mL, 1.00 ± 0.21 h, and 3.26 ± 1.14 h, respectively. The integration of pharmacokinetic parameters showed a shorter t1/2 because of fully considering the contribution of the characteristics of each active ingredient to the overall pharmacokinetics.  相似文献   

11.
Erianin is one of the bibenzyl ingredients isolated from Dctidrobium chrysotoxum Lindl. In recent years, erianin has attracted attention owing to its antitumor activity. In this study, an LC–MS/MS method was established to measure erianin in rat plasma. Gigantol was used as the internal standard. A Waters Acquity UPLC BEH C18 column was employed for chromatographic separation. The mobile phase consisted of water containing 0.1% formic acid and acetonitrile with a gradient elution at the flow rate of 0.4 ml/min. Selective reaction monitoring mode was used for quantitative analysis of erianin in positive electrospray ionization. In the concentration range of 0.1–1200 ng/ml, erianin in rat plasma was linear with correlation coefficient >0.999. The lowest limit of quantification was 0.1 ng/ml. The intra- and inter-day RSDs were <9.69%, while the RE was in the range of −8.59–11.24%. The mean recovery was >85.37%. Erianin was stable in rat plasma after storage under certain conditions. The validated method was demonstrated to be selective, sensitive and reliable, and has been successfully applied to pharmacokinetic study of erianin in rat plasma. Erianin was rapidly eliminated from rat plasma with a short half-life (〜1.5 h) and low oral bioavailability (8.7%).  相似文献   

12.
GMDP (glucosoaminyl-muramyl-dipeptide), a synthetic analog of the peptidoglycan fragment of the bacterial cell wall, is an active component of the immunomodulatory drug Licopid. But the pharmacokinetic parameters of GMDP in humans after oral administration have not been investigated yet. The present study aimed at developing and validating a sensitive LC–MS/MS method for the analysis of GMDP in human plasma. The sample was prepared by solid-phase extraction using Strata-X 33 μm polymeric reversed-phase 60 mg/3 mL cartridges Phenomenex (Torrance, CA, USA). The analytes were separated using an Acquity UPLC BEN C18 column, 1.7 μm 2.1 × 50 mm Waters (Milford, USA). GMDP and internal standard growth hormone releasing peptide-2 (pralmorelin) were ionized in positive electrospray ionization mode and detected in multiple reaction monitoring mode. The developed method was validated within a linear range of 50–3000 pg/mL for GMDP. Accuracy for all analytes, given as the deviation between the nominal and measured concentration and assay variability , ranged from 1.61 to 3.02% and from 0.89 to 1.79%, respectively, for both within- and between-run variabilities. The developed and validated HPLC–MS/MS method was successfully used to obtain the plasma pharmacokinetic profiles of GMDP distribution in human plasma.  相似文献   

13.
A precise and accurate liquid chromatography–tandem mass spectrometric (LC–MS/MS) bioanalytical method has been developed and validated for the simultaneous quantification of WCK 4234 and meropenem (MEM) in dog plasma. Protein precipitation using acetonitrile was employed as a sample preparation approach. Cefepime was used as an internal standard. The developed method was selective, sensitive (limit of quantification, 0.075 μg/ml for both drugs), accurate (recovery > 90%), precise (CV < 10%) and linear (r2 ≥ 0.99, concentration range 0.075–120 μg/ml for both analytes). The developed method was successfully applied for the determination of both drugs in plasma to assess the pharmacokinetics in beagle dogs. WCK 4234 + MEM in a 1:1 ratio at 15 + 15 and 30 + 30 mg/kg doses were administered by the intravenous route. The mean plasma concentration and area under the concentration–time curve of WCK 4234 ranged from 38.3 to 77.4 μg/ml and from 47.8 to 77.1 μg h/ml, respectively, and the values for MEM ranged from 52.2 to 115.3 μg/ml and 70.5 to 133.6 μg h/ml respectively. The elimination half-life of WCK 4234 and MEM was around 0.8 h.  相似文献   

14.
Oleandrin and adynerin are the main toxic components of oleander, an evergreen shrub or a small tree of the oleander family, which belongs to the class of cardiac glycosides exhibiting delayed action. The pharmacokinetic differences of oleandrin and adynerin in rats were studied by ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) under two different administration modes: oral (5 mg/kg) and sublingual intravenous injection (1 mg/kg). The chromatographic column was UPLC BEH C18 (50 mm × 2.1 mm, 1.7 μm), and the column temperature was set at 40 °C. The mobile phase was acetonitrile–water (containing 0.1 % formic acid), with gradient elution, the flow rate was 0.4 mL/min, and the elution time was 4 min. Electrospray (ESI) positive ion mode detection with multiple reaction monitoring mode (MRM) was used for quantitative analysis: oleandrin m/z 577 → 145, adynerin m/z 534 → 113, and internal standard m/z 237 → 135. The established UPLC–MS/MS method was successfully applied to the pharmacokinetics in rats after administering oleandrin and adynerin. The bioavailability of oleandrin and adynerin was found to be low, 7.0 % and 93.1 %; respectively.  相似文献   

15.
In this study, a simple and reliable LC–MS/MS method was first proposed for the simultaneous determination of TUG-891 and its metabolites TUG-891-alcohol, TUG-891-aldehyde, and TUG-891-acid in rat plasma. The analytes and fasiglifam (internal standard) were extracted from plasma samples with acetonitrile and separated using an Acquity BEH C18 column (1.7 μm, 2.1 × 50 mm) with water containing 0.05% ammonium hydroxide and acetonitrile containing 0.05% ammonium hydroxide as the mobile phase. A Q-Exactive Orbitrap mass spectrometer in full-scan mode was used for mass detection, and the data analysis was obtained using a mass extraction window of 5 ppm. The calibration curves exhibited excellent linearity (correlation coefficient > 0.9981) in the concentration range of 0.5–1000 ng/mL. The lower limit of quantification was 0.5 ng/mL for all analytes. The intra- and inter-day precision was less than 11.31%, and the accuracy ranged from −11.50 to 9.50%. The extraction recovery of the analytes from rat plasma was greater than 82.31%, and no obvious matrix effect was found. The established method was further applied to the pharmacokinetic study of TUG-891, TUG-891-alcohol, TUG-891-aldehyde, and TUG-891-acid in rat after a single dose of 5-mg/kg treatment of TUG-891. The results demonstrated that TUG-891 was rapidly metabolized into its metabolites and the systemic exposures of the metabolites were much higher than those of TUG-891.  相似文献   

16.
A simple and sensitive ultra-high performance liquid chromatography–tandem mass spectrometric (UHPLC–MS/MS) method was developed and validated for the determination of ARQ531, a Bruton’s tyrosine kinase inhibitor in rat plasma. After protein precipitation with acetonitrile, the samples were separated on a UPLC BEH C18 column with 0.1% formic acid in water and acetonitrile as mobile phase at a flow rate of 0.4 ml/min. The mass detection was performed on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring with precursor-to-product ion transitions of m/z 479.1 > 365.1 and m/z 441.2 > 138.1 for ARQ531 and internal standard, respectively. Good linearity (correlation coefficient > 0.9988) was achieved over the concentration range of 0.5–1,000 ng/ml and the lower limit of quantitation was 0.5 ng/ml. The accuracy ranged from −13.50 to 11.35% and the precision was <8.87%. The extraction recovery was >85.56%. ARQ531 was demonstrated to be stable under the tested conditions. The validated method was further applied to a pharmacokinetic study of ARQ531 in rats after intravenous (1 mg/kg) and oral (1, 3 and 10 mg/kg) administration. The results demonstrated that ARQ531 displayed linear pharmacokinetic profiles over the oral dose range of 1–10 mg/kg and good oral bioavailability (>50%).  相似文献   

17.
Buparlisib is a selective phosphoinositide 3 kinase inhibitor currently evaluated in clinical trials. We developed and validated an LC–MS/MS coupled with a one-step protein precipitation extraction method for the quantitation of buparlisib in rat plasma. After protein precipitation with acetonitrile, the plasma sample was analyzed using a Cortecs UPLC C18 column, with acetonitrile–0.1% formic acid as the mobile phase system. Mass spectrometric detection was conducted in positive ionization mode, with target quantitative ion pair of m/z 411.2 → 367.2 for buparlisib. The calibration curve showed good linearity (1.0–3000 ng/ml), with acceptable accuracy (RE ranging from −6.2 to 5.9%) and precision (RSD within 8.2%) values at quality control concentrations. Extraction recovery from plasma was 80.9–88.7% and the matrix effect was negligible (92.6–95.2%). The validated method presented a simple quantification method of buparlisib in detail and utilized it for a pharmacokinetic study at three dose concentrations after oral administration in Wistar rats.  相似文献   

18.
Larotrectinib is a first-generation tropomyosin kinase inhibitor, approved for the treatment of solid tumors. In this paper, we present a validated dried blood spot (DBS) method for the quantitation of larotrectinib from mouse blood using HPLC–MS/MS, which was operated under multiple reaction monitoring mode. To the DBS disc cards, acidified methanol enriched with internal standard (IS; enasidenib) was added and extracted using tert-butyl methyl ether as an extraction solvent with sonication. Chromatographic separation of larotrectinib and the IS was achieved on an Atlantis dC18 column using 10 mm ammonium formate–acetonitrile (30:70, v/v) delivered at a flow-rate of 0.80 ml/min. Under these optimized conditions, the retention times of larotrectinib and the IS were ~0.93 and 1.37 min, respectively. The total run time was 2.50 min. Larotrectinib and the IS were analyzed using positive ion scan mode and parent–daughter mass to charge ion (m/z) transitions of 429.1 → 342.1 and 474.1 → 267.1, respectively, were used for the quantitation. The calibration range was 1.06–5,080 ng/ml. No matrix effect or carryover was observed. Hematocrit did not influence DBS larotrectinib concentrations. All of the validation parameters met the acceptance criteria. The applicability of the validated method was shown in a mouse pharmacokinetic study.  相似文献   

19.
Filgotinib is a selective JAK1 (Janus kinase) inhibitor, filed in Japan for the treatment of rheumatoid arthritis. In this paper, we report a validated liquid chromatography coupled with tandem mass spectrometry for the quantification of filgotinib in rat plasma using tofacitinib as an internal standard (IS) as per the Food and Drug Administration regulatory guidelines. Filgotinib and the IS were extracted from rat plasma using ethyl acetate as an extraction solvent and chromatographed using an isocratic mobile phase (0.2% formic acid:acetonitrile; 20:80, v/v) at a flow rate of 0.9 mL/min on a Gemini C18 column. Filgotinib and the IS were eluted at ~1.31 and 0.89 min, respectively. The MS/MS ion transitions monitored were m/z 426.3 → 291.3 and m/z 313.2 → 149.2 for filgotinib and the IS, respectively. The calibration range was 0.78–1924 ng/mL. No matrix effect and carryover were observed. Intra- and inter-day accuracies and precisions were within the acceptance range. Filgotinib was stable for three freeze–thaw cycles: on bench-top up to 6 h, in an autosampler up to 21 h, and at −80 ° C for 1 month. This novel method has been applied to a pharmacokinetic study in rats.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号