首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photophysical properties of aqueous solution of styryl dye, 4-[(E)-2-(3,4-dimethoxyphenyl)ethenyl]-1-ethylpyridinium perchlorate (dye 1), in the presence of cucurbit[7]uril (CB[7]) was studied by means of fluorescence spectroscopy methods. The production of 1:1 host-guest complexes in the range of CB[7] concentrations up to 16 μM with K = 1.0 × 10(6) M(-1) has been observed, which corresponds to appearance of the isosbestic point at 396 nm in the absorption spectra and a 5-fold increase in fluorescence intensity. The decay of fluorescence was found to fit to double-exponential functions in all cases; the calculated average fluorescence lifetime increases from 145 to 352 ps upon the addition of CB[7]. Rotational relaxation times of dye 1 solutions 119 ± 14 ps without CB[7] and 277 ± 35 ps in the presence of CB[7] have been determined by anisotropy fluorescence method. The comparison of the results of quantum-chemical calculations and experimental data confirms that in the host cavity dye 1 rotates as a whole with CB[7].  相似文献   

2.
Two symmetric amphiphilic imidazolium ionic liquids having ω-undecenyl chains form supramolecular complexes with CB[7] and CB[8] in water as revealed by 1H NMR spectroscopy and MALDI-MS. Binding constants in the range 104 to 105 M?1 were estimated from the conductivity measurements for the 1:1 complexes of these imidazolium ionic liquids with CB[7] and CB[8]. Radical initiated polymerization of these host–guest complexes at concentrations above the critical self-assembly concentration of imidazolium ionic liquids to form liposomes, destroys completely (CB[7]) or partially (CB[8]) the host–guest ionic liquid@CB[n] complex; this behaviour was proved by titration with acridine orange tricyclic dye, of CB[n]s in the colloidal solutions of the liposomes before and after performing dialysis to remove free CB[n]s. Thus, the increase in the fluorescence emission of acridine orange by CB[7] is not observed if the polymerized ionic liquid@CB[7] complex is submitted to dialysis to remove uncomplexed CB[7]. Analogous study by titration of absorbance change of acridine orange solutions caused by CB[8], reveals only a partial destruction of the host–guest complex by self-assembly of amphiphilic ionic liquid above the critical self-assembly concentration. The results obtained have been rationalized considering that the driving force for the formation of supramolecular ionic liquid@CB[n] complexes is a hydrophobic interaction between the apolar alkenyl chain and the cucurbituril interior cavity and that these hydrophobic interactions are disturbed when self-assembly leading to liposomes occurs.  相似文献   

3.
Tricyclic basic dyes (proflavine, acridine orange, pyronine, pyronine Y, oxonine, thionine and methylene blue) often form one‐to‐one or two‐to‐one complexes with CB[7] and CB[8], respectively. In the case of pyronine Y, the complexes with CB[7] and CB[8] have a one‐to‐one and three‐to‐one stoichiometry, respectively. The binding constants for CB[7] complexes range from 3.07×106 to 1.70×107 m ?1. In the case of CB[8], the association constant varies between 3.24×1013 and 2.50×1016 m ?2. Overall, these binding constants are four orders of magnitude higher than those reported for the same dyes in β and γ‐cyclodextrins. Formation of the host–guest complexes leads to an increase in the fluorescence quantum yields in the case of CB[7], while the dimeric or trimeric dye encapsulated in CB[8] are remarkably less fluorescent than the same dye in diluted solutions.  相似文献   

4.
The synthesis of two supramolecular diruthenium complexes, 1 ?CB[7] and 1 ?CB[8] (CB[n]=cucurbit[n]uril), which contain the respective host CB[7] and CB[8], were synthesized and isolated. In the case of host CB[8], the desired supramolecular complex was obtained by utilizing dihydroxynapthalene as a template during the synthesis. The 1H NMR spectra, electrochemistry, and photochemistry of these supramolecular complexes were performed in nonaqueous solution. The results show that both CB[7,8] hosts mainly bind to the linker part in solution in acetonitrile. This binding also lowers the oxidation potential of the ruthenium metal center and hinders the quenching effect by the viologen moiety. It has also been shown that external methylviologen can be included into 1 ?CB[8]. Analysis with NMR spectroscopy, electrochemistry, and photochemistry clearly shows a viologen radical dimer formation between the bound viologen and free methylviologen, thereby showing that the unique abilities of the CB[8] host can be utilized even in nonaqueous solution.  相似文献   

5.
A water‐based narrow‐band high‐efficiency dye laser was designed by means of a supramolecular host–guest chemical approach. The lasing characteristics of rhodamine B and sulforhodamine B (Kiton Red S) dyes in aqueous solution with the macrocyclic host cucurbit[7]uril (CB7) as additive were investigated in a narrow‐band dye laser setup. Significant improvements in both photostability and thermo‐optical properties of the aqueous CB7‐complexed dye systems were observed as compared to the uncomplexed dyes in ethanol solution. The tuning curves for the new dye–CB7–water systems were constructed by measuring the laser output at different wavelengths, which showed similar peak efficiencies and red‐shifted gains compared to the ethanolic solutions of the dyes, while dye laser operation revealed comparable pump threshold energies and slope efficiencies. The combined results render the dye–CB7–water system an attractive active medium for high‐repetition rate dye laser operation.  相似文献   

6.
The effect of the macrocyclic host, cucurbit[7]uril (CB7), on the photophysical properties of the 2‐(2′‐hydroxyphenyl)benzimidazole (HPBI) dye have been investigated in aqueous solution by using ground‐state absorption and steady‐state and time‐resolved fluorescence measurements. All three prototropic forms of the dye (cationic, neutral, and anionic) form inclusion complexes with CB7, with the largest binding constant found for the cationic form (K≈2.4×106 M ?1). At pH≈4, the appearance of a blue emission band upon excitation of the HPBI cation in the presence of CB7 indicates that encapsulation into the CB7 cavity retards the deprotonation process of the excited cation, and hence reduces its subsequent conversion to the keto form. Excitation of the neutral form (pH≈8.5), however, leads to an increase in the keto form fluorescence, indicating an enhanced excited‐state intramolecular proton‐transfer process for the encapsulated dye. In both the ground and excited states, the two pKa values of the HPBI dye show upward shifts in the presence of CB7. The prototropic equilibrium of the CB7‐complexed dye is represented by a six‐state model, and the pH‐dependent changes in the binding constants have been analyzed accordingly. It has been observed that the calculated pKa values using this six‐state model match well with the values obtained experimentally. The changes in the pKa values in the presence of CB7 have been corroborated with the modulation of the proton‐transfer process of the dye within the host cavity.  相似文献   

7.
The sulfoxide of 6Z-[2-(methoxyimino)propylidene]penicillanic acid tert-butyl ester and the sulfones of 6Z-[2-(hydroxyimino-, methoxyimino-, benzyloxyimino-, 2-bromo- and 4-bromobenzyloxyimino)-propylidene]penicillanic acid in the syn and anti forms have been synthesized by the condensation of the sulfoxide and sulfone of 6Z-acetylmethylenepenicillanic acid tert-butyl ester with hydroxylamine, methoxyamine, benzyloxyamine, 2-bromo- and 4-bromobenzyloxyamines. The syn and anti isomers of 3Z-(2-methoxyiminopropylidene)-4R-(benzothiazolyl-2-dithio)-2-oxoazetidinyl-1R-(2-propenyl)acetic acid tert-butyl ester were obtained by opening of the thiazolidine ring in 6Z-[2-(methoxy-imino)propylidene]-1-oxopenicillanic acid tert-butyl ester with 2-mercaptobenzothiazole. The 3Z-(2-methoxyiminopropylidene)-4R-(methylsulfonyl)-2-oxoazetidinyl-1-(2-propylidene)acetic acid tert-butyl ester was synthesized by the interaction of 1,8-diazobicyclo[5.4.0]undec-7-ene and methyl iodide with 6Z-[2-(methoxyimino)propylidene]-1,1-dioxopenicillanic acid tert-butyl ester. A dependence of the cytotoxic effect in relation to cancer and normal cells in vitro on the structure of the substituent in position 6 and the syn and anti isomerism of the oxyimino group was established for the synthesized compounds.  相似文献   

8.
The interactions of pinacyanol chloride (PIN), a cationic cyanine dye, with the anionic polyelectrolyte poly(acrylic acid, sodium salt) (PAA) towards enhancing H-aggregation were investigated by electronic absorption spectroscopy. We employed the cucurbit[7]uril (CB7) host to control the formation of these aggregates via host–guest binding interactions with the dye molecules. Absorption spectroscopic studies clearly demonstrate that PAA enhances the formation of PIN H-aggregates. Electrostatic interactions between the cyanine dye molecules and the polyelectrolyte chains assist the formation of H-aggregates at very low dye concentrations (ca. 10 μM). Furthermore, the presence of CB7 was found to effectively disrupt the interactions responsible for dye aggregation. Thus, CB7 completely disrupts the H-aggregates (as well as lower concentrations of J-aggregates) by forming inclusion complexes with PIN. A competing guest, 1-aminoadamantane (AD), was utilised to adjust the extent of aggregation of the cyanine dye. AD regulates aggregate formation by forming an extremely stable complex with CB7 and exerting a tight control on the CB7 concentration available to interact and bind with the dye. Our spectroscopic data clearly indicate that by varying the relative molar ratios of CB7 host, AD and polyelectrolyte acid groups, we can quantitatively control the extent of formation of PIN H-aggregates in these solutions.  相似文献   

9.
Tuning the activity of radicals is crucial for radical reactions and radical‐based materials. Herein, we report a supramolecular strategy to accelerate the Fenton reaction through the construction of supramolecularly activated radical cations. As a proof of the concept, cucurbit[7]uril (CB[7]) was introduced, through host–guest interactions, onto each side of a derivative of 1,4‐diketopyrrolo[3,4‐c]pyrrole (DPP), a model dye for Fenton oxidation. The DPP radical cation, the key intermediate in the oxidation process, was activated by the electrostatically negative carbonyl groups of CB[7]. The activation induced a drastic decrease in the apparent activation energy and greatly increased the reaction rate. This facile supramolecular strategy is a promising method for promoting radical reactions. It may also open up a new route for the catalytic oxidation of organic pollutants for water purification and widen the realm of supramolecular catalysis.  相似文献   

10.
The first synthesis of (Z)-neomanoalide ( 4 ) and an improved synthesis of its (E)-isomer 3 was accomplished in a concise, regiocontrolled manner by exploiting 2-[(tert-butyl)dimethylsiloxy]-4{[(tert-butyl)dimethylsiloxy]-methyl}furan ( 6 ) as the key reagent. Lithiation of 6 and subsequent reaction with the (2Z)- or (2E)-isomer of (6E)-3-{[(tert-butyl)dimethylsiloxy]methyl}-7-methyl-9-(2′,6′,6′-trimethylcyclohex-1′-enyl)nona-2,6-dienyl bromide ( 5 ), followed by hydrolysis, afforded the corresponding neomanoalide.  相似文献   

11.
The complexation behaviors of acridine red (AR), neutral red (NR) and rhodamine B (RhB) dye guest molecules by three kinds of supramolecular hosts, including β-cyclodextrin (β-CD), calix[4]arene tetrasulfonate (C4AS) and cucurbit[7]uril (CB[7]), have been investigated by means of fluorescence spectra in aqueous citrate buffer solution (pH 6.0). The results obtained show that the three hosts, possessing different types of cavity, lead to various complexation-induced fluorescence of dye guests, and present different binding ability and molecular selectivity. The complexation stability constants decrease in the order of NR > AR > RhB for C4AS and CB[7] hosts, while in the order of RhB > AR > NR for β-CD host. Particularly, CB[7] displays the strongest binding ability with NR (K S = 33300 M? 1), and provides the molecular selectivity of 4.8 for NR/AR pairs. Although the binding ability of C4AS for present dye guests is weaker than CB[7], but the molecular selectivity of the two hosts are nearly equivalent. β-CD shows stronger binding ability with RhB (K S = 5880 M? 1) as comparison with CB[7] and C4AS. Furthermore, the solvent effects and salt effects during the course of complexation have also been investigated.  相似文献   

12.
anti-25,27-Bis-n-octyloxycalix[4]arene, the paco-isomer of25,27-bis-n-octyloxycalix[4]arene crown-6 ether, and the paco- and1,3-alt isomers of 25,27-bis-n-octyloxycalix[4]arene t-butylbenzocrown-6 ether were prepared. The crystal structures of anti-25,27-bis-n-octyloxycalix[4]arene, paco-25,27-bis-n-octyloxycalix[4]arene crown-6, and 1,3-alt-25,27-bis-n-octyloxycalix[4]arene crown-6 were determined and thesolution structure of anti-25,27-bis-n-octyloxycalix[4]arene was studied by 2D- and VT-NMR. The extraction of alkali metal nitrates by thepaco-25,27-bis-n-octyloxycalix[4]arene crown-6 and t-butylbenzocrown-6 ethers in 1,2-dichloroethane was compared to that of the corresponding 1,3-alt isomers.  相似文献   

13.
The modulation of the hierarchical nucleated self‐assembly of tri‐β3‐peptides has been studied. β3‐Tyrosine provided a handle to control the assembly process through host‐guest interactions with CB[7] and CB[8]. By varying the cavity size from CB[7] to CB[8] distinct phases of assembling tri‐β3‐peptides were arrested. Given the limited size of the CB[7] cavity, only one aromatic β3‐tyrosine can be simultaneously hosted and, hence, CB[7] was primarily acting as an inhibitor of self‐assembly. In strong contrast, the larger CB[8] can form a ternary complex with two aromatic amino acids and hence CB[8] was acting primarily as cross‐linker of multiple fibers and promoting the formation of larger aggregates. General insights on modulating supramolecular assembly can lead to new ways to introduce functionality in supramolecular polymers.  相似文献   

14.
The population of the conformations obtained by rotation around the C(2)? N and the N? C(O) bonds of AllNAc, GlcNAc, and GlcNMeAc derivatives was investigated by 1H-NMR spectroscopy. The AllNAc-derived α-D -and β-D -pyranosides 4–7 , the AllNAc diazirine 16 , and the GlcNAc-derived axial anomers α-D - 8–10 prefer the (Z)-anti-conformation. A significant population of the (Z)-syn-conformer in the (Z)-syn/(Z)-anti-equilibrium for the equatorial anomers β-D - 8–10 and the GlcNAc diazirine 17 was evidenced by an upfield shift of H? C(2), downfield shifts of H? C(1) and H? C(3), and by NOE measurements. The population of the (Z)-syn-conformation depends on the substituent at C(1) and is highest for the hexafluoroisopropyl glycoside. The population of the (Z)-syn-conformation of β-D - 14 decreases with increasing polarity of the solvent, but a substantial population is still observed for solutions in D2O. Whereas the α-D -anomers of the hemiacetal 22 and the methyl glycoside 21 prefer the (Z)-anti-conformation in D2O solution, the corresponding β-D -anomers are mixtures of the (Z)-anti-and (Z)-syn-conformers. The diazirine 17 self-associates in CD2Cl2 solution at concentrations above 0.005M at low temperatures. The axial anomers of the GlcNMeAc derivatives α-D - 26–28 are 2:1 to 3:1 mixtures of (Z)-anti-and (E)-anti-conformers, whereas the corresponding β-D -glycosides are ca. 1:3:6 mixtures of (Z)-syn-, (Z)-anti-, and (E)-anti-conformers.  相似文献   

15.
An efficient chemoenzymatic process has been developed for preparation of 7-amino-3-[Z-2-(4-methylthiazol-5-yl)vinyl]-3-cephem-4-carboxylic acid, featuring removal of para-methoxybenzyl by trichloroacetic acid and cleavage of phenylacetyl E-isomer by immobilized penicillin acylase enzyme. The E-isomer of 7-amino-3-[Z-2-(4-methylthiazol-5-yl)vinyl]-3-cephem-4-carboxylic acid could be easily decreased to less than 0.2 % by salt formation. Importantly, trichloroacetic acid and immobilized penicillin acylase enzyme could be recovered and reused. The enzyme reaction could be run in a flow reactor. Only two crystallizations are involved as the purification procedure in the six-step sequence.  相似文献   

16.
Rose bengal-sensitized photooxygenation of 4-propyl-4-octene ( 1 ) in MeOH/Me2CHOH 1:1 (v/v) and MeOH/H2O 95:5 followed by reduction gave (E)-4-propyl-5-octen-4-ol ( 4 ), its (Z)-isomer 5 , (E)-5-propyl-5-octen-4-ol ( 6 ), and its (Z)-isomer 7 . Analogously, (E)-4-propyl[1,1,1-2H3]oct-4-ene ( 2 ) gave (E)-4-propyl[1,1,1-2H3]oct-5-en-4-ol ( 14 ), its (Z)-isomer 15 , (E)-5-[3′,3′,3′-2H3]propyl-5-octen-4-ol ( 16 ), its (Z)-isomer 17 , and the corresponding [8,8,8-2H3]-isomers 18 and 19 (see Scheme 1). The proportions of 4–7 were carefully determined by GC between 10% and 85% conversion of 1 and were constant within this range. The labeled substrate 2 was photooxygenated in two high-conversion experiments, and after reduction, the ratios 16/18 and 17/19 were determined by NMR. Isotope effects in 2 were neglected and the proportions of corresponding products from 1 and 2 assumed to be similar (% 4 ≈? % 14 ; % 5 ≈? % 15 ; % 6 ≈? % ( 16 + 18 ): % 7 ≈? % ( 17 + 19 )). Combination of these proportions with the ratios 16/18 and 17/19 led to an estimate of the proportions of hydroperoxides formed from 2 . Accordingly, singlet oxygen ene additions at the disubstituted side of 2 are preferred (ca. 90%). The previously studied trisubstituted olefins 20–25 exhibited the same preference, but had both CH3 and higher alkyl substituents on the double bond. In these substrates, CH3 groups syn to the lone alkyl or CH3 group appear to be more reactive than CH2 groups at that site beyond a statistical bias.  相似文献   

17.
The 1:1 and 2:1 host–guest complexation of a series of 1,n-bis(isoquinolinium)alkane dications (Iq(CH2)nIq2+, n = 2, 4, 5, 6, 8, 9, 10 and 12, and Iq(p-xylene)Iq2+) by cucurbit[7]uril (CB[7]) in aqueous solution has been investigated by 1H NMR spectroscopy and ESI mass spectrometry. The site of binding of the first CB[7] is dependent on the nature of the central linker group, with encapsulation of the p-xylene group or the polymethylene chain when n = 6–10.With shorter (n = 2–5) or longer (n = 12) chains, the first CB[7] binds over an isoquinolinium group. With a second CB[7], the binding of the central group is abandoned in favour of the CB[7] hosts encapsulating the two cationic isoquinolinium termini. The 1:1 and 2:1 host–guest stability constants are related to modes of binding and the nature of the central linkers, and are compared with dicationic guests bearing different terminal groups.  相似文献   

18.
《化学:亚洲杂志》2018,13(19):2818-2823
The development of artificial self‐assembling systems with dynamic photo‐regulation features in aqueous solutions has drawn great attention owing to the potential applications in fabricating elaborate biological materials. Here we demonstrate the fabrication of water‐soluble cucurbit[8]uril (CB[8])‐mediated supramolecular polymers by connecting the fluorinated azobenzene (FAB) containing monomers through host‐enhanced heteroternary π–π stacking interactions. Benefiting from the unique visible‐light‐induced EZ photoisomerization of the FAB photochromophores, the encapsulation behaviors between the CB[8] macrocycle and the monomers could be regulated upon visible light irradiation, resulting in the depolymerization of such CB[8]‐mediated supramolecular polymers.  相似文献   

19.
The reaction of cyclooctatetraene with methyl diazoacetate or diazoacetone in the presence of rhodium binuclear complexes gives, besides 9-substituted bicyclo[6.1.0]nona-2,4,6-trienes (mixture ofanti- andsyn-isomers, total yields 60–75%), isomeric β-(cyclohepta-2,4,6-trien-1-yl)acrylates or 4-(cyclohepta-2,4,6-trien-1-yl)but-3-en-2-one in 20–34% yields. In the case of methyl diazoacetate, a mixture ofE- andZ-isomers in a ratio of −3.5∶1 was obtained, while diazoacetone gave onlyE-isomer. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2204–2206, November, 1999.  相似文献   

20.
The potential use of cucurbit[7]uril (CB[7]) as an excipient in oral formulations for improved drug physical stability or for improved drug delivery was examined with the antituberculosis drugs pyrazinamide (pyrazine-2-carboxamide) and isoniazid (isonicotinohydrazide). Both drugs form 1:1 host–guest complexes with CB[7] as determined by 1H nuclear magnetic resonance spectrometry, electrospray ionisation mass spectrometry and molecular modelling. Drug binding is stabilised by hydrophobic effects between the pyridine and pyrazine rings of isoniazid and pyrazinamide, respectively, to the inside cavity of the CB[7] macrocycle as well as hydrogen bonds between the hydrazide and amide groups of each drug to the CB[7] carbonyl portals. At pH 1.5, isoniazid binds CB[7] with a binding constant of 5.6 × 105 M?1, whilst pyrazinamide binds CB[7] at pH 7 with a much smaller binding constant (4.8 × 103 M?1). Finally, CB[7] prevents drug melting through encapsulation. Where previously pyrazinamide displays a typical melting point of 189 °C and isoniazid 171 °C, by differential scanning calorimetry, no melting or degradation at temperatures up to 280 °C is observed for either drug once bound by CB[7].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号