首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work on the design and studies of luciferins related to the blue-hued coelenterazine, the synthesis of heterocyclic analogues susceptible to produce a photon, possibly at a different wavelength, is undertaken. Here, the synthesis of O-acetylated derivatives of imidazo[1,2-b]pyridazin-3(5 H)-one, imidazo[2,1-f][1,2,4]triazin-7(1 H)-one, imidazo[1,2-a]pyridin-3-ol, imidazo[1,2-a]quinoxalin-1(5 H)-one, benzo[f]imidazo[1,2-a]quinoxalin-3(11 H)-one, imidazo[1′,2′:1,6]pyrazino[2,3-c]quinolin-3(11 H)-one, and 5,11-dihydro-3 H-chromeno[4,3-e]imidazo[1,2-a]pyrazin-3-one is described thanks to extensive use of the Buchwald–Hartwig N-arylation reaction. The acidic hydrolysis of these derivatives then gave solutions of the corresponding luciferin analogues, which were studied. Not too unexpectedly, even if these were “dressed” with substituents found in actual substrates of the nanoKAZ/NanoLuc luciferase, no bioluminescence was observed with these compounds. However, in a phosphate buffer, all produced a light signal, by chemiluminescence, with extensive variations in their respective intensity and this could be increased by adding a quaternary ammonium salt in the buffer. This aspect was actually instrumental to determine the emission spectra of many of these luciferin analogues.  相似文献   

2.
Spectroscopic and photophysical properties of firefly luciferin and oxyluciferin analogues with an amine substituent (NH2, NHMe and NMe2) at the C6' position were studied based on absorption and fluorescence measurements. Their π‐electronic properties were investigated by DFT and TD‐DFT calculations. These compounds showed fluorescence solvatochromism with good quantum yields. An increase in the electron‐donating strength of the substituent led to the bathochromic shift of the fluorescence maximum. The fluorescence maxima of the luciferin analogues and the corresponding oxyluciferin analogues in a solvent were well correlated with each other. Based on the obtained data, the polarity of a luciferase active site was explained. As a result, the maximum wavelength of bioluminescence for a luciferin analogue was readily predicted by measuring the photoluminescence of the luciferin analogue in place of that of the corresponding oxyluciferin analogue.  相似文献   

3.
Five new firefly luciferin ( 1 ) analogues were synthesized and their light emission properties were examined. Modifications of the thiazoline moiety in 1 were employed to produce analogues containing acyclic amino acid side chains ( 2 – 4 ) and heterocyclic rings derived from amino acids ( 5 and 6 ) linked to the benzothiazole moiety. Although methyl esters of all of the synthetic derivatives exhibited chemiluminescence activity, only carboluciferin ( 6 ), possessing a pyrroline‐substituted benzothiazole structure, had bioluminescence (BL) activity (λmax=547 nm). Results of bioluminescence studies with AMP‐carboluciferin (AMP=adenosine monophosphate) and AMP‐firefly luciferin showed that the nature of the thiazoline mimicking moiety affected the adenylation step of the luciferin–luciferase reaction required for production of potent BL. In addition, BL of 6 in living mice differed from that of 1 in that its luminescence decay rate was slower.  相似文献   

4.
Red‐shifted bioluminescent emitters allow improved in vivo tissue penetration and signal quantification, and have led to the development of beetle luciferin analogues that elicit red‐shifted bioluminescence with firefly luciferase (Fluc). However, unlike natural luciferin, none have been shown to emit different colors with different luciferases. We have synthesized and tested the first dual‐color, far‐red to near‐infrared (nIR) emitting analogue of beetle luciferin, which, akin to natural luciferin, exhibits pH dependent fluorescence spectra and emits bioluminescence of different colors with different engineered Fluc enzymes. Our analogue produces different far‐red to nIR emission maxima up to λmax=706 nm with different Fluc mutants. This emission is the most red‐shifted bioluminescence reported without using a resonance energy transfer acceptor. This improvement should allow tissues to be more effectively probed using multiparametric deep‐tissue bioluminescence imaging.  相似文献   

5.
Even though bioluminescent oligochaetes rarely catch people's eyes due to their secretive lifestyle, glowing earthworms sighting reports have come from different areas on all continents except Antarctica. A major breakthrough in the research of earthworm bioluminescence occurred in the 1960s with the studies of the North American Diplocardia longa. Comparative studies conducted on 13 earthworm species belonging to six genera showed that N‐isovaleryl‐3‐aminopropanal (Diplocardia luciferin) is the common substrate for bioluminescence in all examined species, while luciferases appeared to be responsible for the color of bioluminescence. The second momentous change in the situation has occurred with the discovery in Siberia (Russia) of two unknown luminous enchytraeids. The two bioluminescent systems belong to different types, have different spectral characteristics and localization, and different temperature and pH optima. They are unique, and this fact is confirmed by the negative results of all possible cross‐reactions. The bioluminescent system of Henlea sp. comprises four essential components: luciferase, luciferin, oxygen and calcium ion. For Friderica heliota, the luminescent reaction requires five components: luciferase, luciferin, ATP, magnesium ion and oxygen. Along with luciferin, more than a dozen analogues were isolated from worm biomass. These novel peptide‐like natural compounds represent an unprecedented chemistry found in terrestrial organisms.  相似文献   

6.
Luciferin regenerating enzyme (LRE) contributes to in vitro recycling of d ‐luciferin to produce persistent and longer light emission by luciferase. Luciferin binding domains I and II among LREs regarded as potential candidates for luciferin‐binding sites. In this study, for the first time, amino acids T69, G75 and K77 located at luciferin binding domain I of LRE from L. turkestanicus (T‐LRE) substituted by using site‐directed mutagenesis. Single mutant T69R increased luciferase light output more than two‐fold over a longer time in comparison with a wild‐type and other mutants of T‐LRE. Nevertheless, double mutant (K77E/T69R) increased the amount of bioluminescent signal more than two‐fold over a short time. In addition, G75E, K77E and G75E/T69R mutants did not improve luciferin–luciferase in vitro bioluminescence. Based on our results, addition of K77E/G75E and K77E/G75E/T69R mutants caused intermediate changes in bioluminescence from in vitro luciferin–luciferase reaction. These findings indicated that the amino acids in question are possible to be located within T‐LRE active site. It may also be suggested that substituted Arg69 (Arg218) plays an important role in luciferin binding and the existence of Gly75 as well as Lys77 is essential for T‐LRE which has already evolved to have different functions in nature.  相似文献   

7.
A series of Latia luciferin analogues having methyl-substituted phenyl groups instead of the natural 2,6,6-trimethylhexene ring was synthesized and their bioluminescence activity were measured. The Latia luciferase was found to be able to moderately recognize the appropriately methyl-substituted phenyl analogues with the same light production kinetics as that of natural luciferin.  相似文献   

8.
The dimethylamino group of AkaLumine ((4S)-2-[(1E,3E)-4-[4-(dimethylamino)phenyl]-1,3-butadien-1-yl]-4,5-dihydro-4-thiazolecarboxylic acid), a red-light-emitting firefly luciferin analogue, was replaced by cyclic amino groups (1-pyrrolidinyl, 1-piperidino, 1-azepanyl, and 4-morpholino) to give AkaLumine analogues exhibiting desirable bioluminescence with emission maxima in the red region (656–667 nm). In particular, a bioluminescence reaction of 1-pyrrolidinyl analogue with a recombinant Photinus pyralis luciferase showed a higher quantum yield than that with AkaLumine, giving an improved bioluminescence intensity. The 1-pyrrolidinyl analogue also showed the strongest luminescence in whole-body luciferase-expressing mice among the analogues, indicating that a quantum yield improvement of a luciferin analogue is effective to increase bioluminescence imaging intensity.  相似文献   

9.
Cypridina luciferin is the substrate in the bioluminescence of a luminous ostracod Cypridina (Vargula) hilgendorfii. Cypridina luciferin contains a chiral center in the sec-butyl moiety. Here, we report a convenient method for the preparation of (S)-Cypridina luciferin by the condensation of (S)-1,1-diethoxy-3-methylpentan-2-one with ethioluciferin. The light yield of the synthesized (S)-luciferin in the presence of Cypridina luciferase was about 1.7 times as active as that of racemic form. Furthermore, several luciferin analogs prepared by the same condensation with different α-ketoacetal derivatives showed moderate light yield with Cypridina luciferase. These readily available Cypridina luciferin and analogs are applicable to the bioluminescent detection of Cypridina luciferase.  相似文献   

10.
Mechanisms in the quantum yield of Cypridina bioluminescence   总被引:4,自引:1,他引:4  
Abstract— –The influence of temperature, pH, salts, and reactant concentrations on the biolumin-escent oxidation of Cypridina luciferin catalyzed by Cypridina luciferase indicates a highest quantum yield φ (einsteins per mole of luciferin oxidized) of 0.31 in H2O, or 0.33 in 99% D2O. With the aid of data on fluorescence of the light-emitting oxyluciferin-luciferase complex, and of oxyluciferin in diglyme, partial explanations are suggested for the observed variations in φ, including the relatively low φ, of 0.03 for chemiluminescence of luciferin in organic solvents, wherein a different pathway of luciferin degradation, as indicated by chromatographic evidence, results in much less population of the excited state.  相似文献   

11.
In the luminous ostracod Cypridina (presently Vargula) hilgendorfii, Cypridina luciferyl sulfate (3‐enol sulfate of Cypridina luciferin) is converted to Cypridina luciferin by a sulfotransferase with 3′‐phosphoadenosine‐5′‐phosphate (PAP) as a sulfate acceptor. The resultant Cypridina luciferin is used for the luciferase–luciferin reaction of Cypridina to emit blue light. The luminescence stimulation with major organic cofactors was examined using the crude extracts of Cypridina specimens, and we found that the addition of coenzyme A (CoA) to the crude extracts significantly stimulated luminescence intensity. Further, the light‐emitting source in the crude extracts stimulated with CoA was identified as Cypridina luciferyl sulfate, and we demonstrated that CoA could act as a sulfate acceptor from Cypridina luciferyl sulfate. In addition, the sulfate group of Cypridina luciferyl sulfate was also transferred to adenosine 5′‐monophosphate (5′‐AMP) and adenosine 3′‐monophosphate (3′‐AMP) by a sulfotransferase. The sulfated products corresponding to CoA, 5′‐AMP and 3′‐AMP were identified using mass spectrometry. This is the first report that CoA can act as a sulfate acceptor in a sulfotransferase reaction.  相似文献   

12.
Ultraweak light emission was detected upon injection of firefly luciferin into live Tenebrio larvae. A chemilumi-nescent enzymatic activity dependent on molecular oxygen, D-luciferin and MgATP was then isolated from larval fat body extracts by precipitation with 70% ammonium sulfate. D-Luciferin and ATP can be replaced by luciferyl-adenylate. Pyrophosphate is a main product from the chemiluminescent reaction. The in vitro chemiluminescence intensity was not affected by peroxidase inhibitors such as N3?- (0.5 mM) and CN? (1 mM), attesting to its nonperoxidatic nature but was strongly inhibited by AMP (1 mM), luciferin 6′-ethyl ether (1 mM) and sodium pyrophosphate (2 mM), well-known firefly lucifer-ase inhibitors. Some physical-chemical properties of this enzymatic activity were similar to those of firefly lucif-erase (KMATP = 195 μM; K0.5 luciferin - 0.8 mM; optimum pH 8.5; δmax= 610 nm at pH 8.5; firefly lucifer-ase: δmax= 565 nm at pH 8.0 and 619 mm at pH 6.0), but the chemiluminescence was not affected by addition of polyclonal antibodies raised against Photinus pyralis luciferase. These data suggest that this chemiluminescence results from a ligase with luciferase activity.  相似文献   

13.
The bioluminescence of the American firefly Photinus is due to the reaction of 2-(6-hydroxybenzothiazol-2-yl)-Δ2-1,3-thiazoline-4-carboxylic acid (“firefly luciferin”) with the enzyme luciferase in the presence of ATP and magnesium ion. In the crustacean Cypridina, on the other hand, the bioluminescence is due to the reaction of a luciferase with 8-(3-guanidinopropyl)-6-indol-3-yl-2-(1-methylpropyl)-3,7-dihydroimidazo[1,2-a]-pyrazin-3-one (“Cypridina luciferin”). The luciferin in Latia is 1,3,3-trimethyl-2-(4-formyloxy-3-methyl-3-butenyl)-1-cyclohexene and that in Renilla is a tryptamine derivative that has not yet been accurately identified; the luciferins of other luminescent organisms are not yet known. A review is given of the investigations which have been carried out on the above luciferins and the course of the luciferin-luciferase reaction is examined. Numerous spectral data obtained during the examination of these compounds are included in the text.  相似文献   

14.
In the last few decades, bioluminescent systems based on the expression of a luciferase and the addition of a luciferin to monitor the emission of light have become very important tools for biological investigations. A growing proportion of these systems use coelenterazine or analogues of imidazo[1,2‐a]pyrazine luciferins along with photoproteins or luciferases from sea creatures such as Aequorea, Renilla, Gaussia or Oplophorus. Central to the success of these tools are the synthetic pathways developed not only to prepare the naturally occurring luciferins, but also to design altered compounds that exhibit improved bioluminescence. Current work is indeed focused on the design of systems exhibiting extended luminescence (“glow” systems) or redshifted wavelengths, as well as constructions better adapted to conditions in cells or in vivo. This review describes the synthetic pathways used to prepare imidazo[1,2‐a]pyrazine luciferins along with the research efforts aimed at preparing analogues even better suited to the design of assays.  相似文献   

15.
A new caged firefly luciferin (luciferin) with a thiochromone S,S-dioxide (TSSDO) as a photolabile protecting group was synthesized. Photodeprotection of the caged compound proceeded smoothly under photoirradiation at 365 nm in aqueous solution. The bioluminescence of the regenerated luciferin after uncaging was detected using a typical luciferin–luciferase reaction. These results indicated that TSSDO could be an attractive chemical tool for regulating biological phenomena.  相似文献   

16.
The synthesis and bioluminescence of allyl-substituted luciferin derivatives as substrates for firefly luciferase are reported. The allylation of luciferins induced bathochromic shift (15–40?nm) of the bioluminescence emission. Upon combination with other chemical modifications for bioluminescence wavelength tuning, novel red emitting luciferin analogues were obtained with emission maxima at 685 and 690?nm.  相似文献   

17.
Contribution of luciferin‐regenerating enzyme (LRE) for in vitro recycling of D‐luciferin has been reported. According to crystal structure of LRE, it is a beta‐propeller protein which is a type of all β‐protein architecture. In this overview, reinvestigation of the luciferase‐based LRE assays and its function is reported. Until now, sequence of LRE genes from four different species of firefly has been reported. In spite of previous reports, T‐LRE (from Lampyris turkestanicus) was cloned and expressed in Escherichia coli as well as Pichia pastoris in a nonsoluble form as inclusion body. According to recent investigations, bioluminescent signal of soluble T‐LRE–luciferase‐coupled assay increased and then reached an equilibrium state in the presence of D‐cysteine. In addition, the results revealed that both D‐ and L‐cysteine in the absence of T‐LRE caused a significant increase in bioluminescence intensity of luciferase over a long time. Based on activity measurements and spectroscopic results, D‐cysteine increased the activity of luciferase due to its redox potential and induction of conformational changes in structure and kinetics properties. In conclusion, in spite of previous reports on the effect of LRE (at least T‐LRE) on luciferase activity, most of the increase in luciferase activity is caused by direct effect of D‐cysteine on structure and activity of firefly luciferase. Moreover, bioinformatics analysis cannot support the presence of LRE in peroxisome of photocytes in firefly lanterns.  相似文献   

18.
The photophysical properties of β-substituted Zn–tetraarylporphyrin (ZnTAP) analogues used as dyes in dye-sensitized solar cells were studied using density functional theory (DFT). Singlet-excitation energy calculations of ZnTAP analogues were performed using time-dependent DFT with B3LYP, B3PW91, PBE0 exchange–correlation functionals at 6-31G(d) and 6-31+G(d) basis sets using B3LYP/6-31G(d) geometries. The PBE0 functional at 6-31+G(d) basis set provided a better correlation with the experimental data for both B- and Q-bands. The inclusion of solvation effect in the calculations provided a good agreement in terms of B:Qave ratio of the oscillator strengths for both analogues with the experimental values. Analogue 2 has a higher and a more balanced charge-carrier transport rates than analogue 1. In general, the addition of an electron-donating group in the meso-substituent (analogue 2) resulted in a narrower band gap, higher oscillator strength, a more red-shifted absorption spectra, and better charge-transfer characteristics than analogue 1.  相似文献   

19.
The bioluminescent system of the univalve shell Latia neritoides exhibits a luciferin-luciferase reaction. We study the enol formate structure of Latia luciferin, which is expected to be important for luminescent activity. The Latia luciferin analogues with an enol substituted benzoate moiety were synthesized and their bioluminescent activity was measured. The Latia luciferin benzoate analogues delay emission for natural luciferin in bioluminescence, indicating that the Latia bioluminescent activity can be controlled by the design of the enol ester.  相似文献   

20.
In the course of investigations on the possible involvement of the CIEEL (chemically initiated electron-exchange luminescence) mechanism in firefly bioluminescence, we have synthesized two novel firefly luciferin substrate analogues. D-Naphthylluciferin and D-quinolylluciferin were prepared by condensing D-cysteine with 2-cyano-6-hydroxynaphthalene and 2-cyano-6-hydroxyquinoline, respectively. These analogues are the first examples of bioluminescent substrates for firefly luciferase that do not contain a benzothiazole moiety. Firefly luciferase-catalyzed bioluminescence emission spectra revealed that compared to the normal yellow-green light of luciferin (lambda max = 559 nm), the emission from naphthylluciferin is significantly blue-shifted (lambda max = 524 nm); whereas quinolylluciferin emits orange-red light (lambda max = 608 nm). The fluorescence emission spectra, reaction pH optima, relative light yields, light emission kinetics and KM values of the analogues also were measured and compared to those of luciferin. Neither of the analogues produced the characteristic flash kinetics observed for the natural substrate. Instead, slower rise times to peak emission intensity were recorded. It appears that the formation of an intermediate from the analogue adenylates prior to the addition of oxygen is responsible for the slow rise times. The synthetic substrate analogues described here should be useful for future mechanistic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号