首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salinity is one of the most common abiotic stresses encountered by plants. Reversible protein phosphorylation is involved in plant defense processes against salinity stress. Here, we performed global phosphopeptide mapping through enrichment by our synthesized PVA‐phosphate‐Ti4+ IMAC coupled with subsequent identification by ESI‐Q‐TOF MS. A total of 104 peptide sequences containing 139 phosphorylation sites were determined from 70 phosphoproteins of the control leaves. In contrast, 124 phosphopeptides containing 143 phosphorylated sites from 92 phosphoproteins were identified in salt‐stressed maize leaves. Compared with the control, 47 proteins were phosphorylated, 25 were dephosphorylated, and 45 overlapped. Among the 72 differential phosphoproteins, 35 were known salt stress response proteins and the rest had not been reported in the literature. To dissect the differential phosphorylation, gene ontology annotations were retrieved for the differential phosphoproteins. The results revealed that cell signaling pathway members such as calmodulin and 14‐3‐3 proteins were regulated in response to 24‐h salt stress. Multiple putative salt‐responsive phosphoproteins seem to be involved in the regulation of photosynthesis‐related processes. These results may help to understand the salt‐inducible phosphorylation processes of maize leaves.  相似文献   

2.
Phytochrome A (phyA), the most versatile plant phytochrome, exists in the two isoforms, phyA′ and phyA′′, differing by the character of its posttranslational modification, possibly, by phosphorylation at the N‐terminal extension [Sineshchekov, V. (2010) J. Botany 2010, Article ID 358372]. This heterogeneity may explain the diverse modes of phyA action. We investigated possible roles of protein phosphatases activity and pH in regulation of the phyA pools' content in etiolated seedlings of maize and their extracts using fluorescence spectroscopy and photochemistry of the pigment. The phyA′/phyA′′ ratio varied depending on the state of development of seedlings and the plant tissue/organ used. This ratio qualitatively correlated with the pH in maize root tips. In extracts, it reached a maximum at pH ≈ 7.5 characteristic for the cell cytoplasm. Inhibition of phosphatases of the PP1 and PP2A types with okadaic and cantharidic acids brought about phyA′ decline and/or concomitant increase of phyA′′ in coleoptiles and mesocotyls, but had no effect in roots, revealing a tissue/organ specificity. Thus, pH and phosphorylation status regulate the phyA′/phyA′′ equilibrium and content in the etiolated (maize) cells and this regulation is connected with alteration of the processes of phyA′ destruction and/or its transformation into the more stable phyA′′.  相似文献   

3.
The concepts of both protein glycosylation and cellular signaling have been influenced by O-linked-β-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) on the hydroxyl group of serine or threonine residues. Unlike conventional protein glycosylation, O-GlcNAcylation is localized in the nucleocytoplasm and its cycling is a dynamic process that operates in a highly regulated manner in response to various cellular stimuli. These characteristics render O-GlcNAcylation similar to phosphorylation, which has long been considered a major regulatory mechanism in cellular processes. Various efficient chemical approaches and novel mass spectrometric (MS) techniques have uncovered numerous O-GlcNAcylated proteins that are involved in the regulation of many important cellular events. These discoveries imply that O-GlcNAcylation is another major regulator of cellular signaling. However, in contrast to phosphorylation, which is regulated by hundreds of kinases and phosphatases, dynamic O-GlcNAc cycling is catalyzed by only two enzymes: uridine diphospho-N-acetyl-glucosamine:polypeptide β-N-acetylglucosaminyl transferase (OGT) and β-D-N-acetylglucosaminidase (OGA). Many useful chemical tools have recently been used to greatly expand our understanding of the extensive crosstalk between O-GlcNAcylation and phosphorylation and hence of cellular signaling. This review article describes the various useful chemical tools that have been developed and discusses the considerable advances made in the O-GlcNAc field.  相似文献   

4.
5.
2‐DE is typically capable of discriminating proteins differing by a single phosphorylation or dephosphorylation event. However, a reliable representation of protein phosphorylation states as they occur in vivo requires that both phosphatases and kinases are rapidly and completely inactivated. Thermal stabilization of mouse cerebral cortex homogenates effectively inactivated these enzymes, as evidenced by comparison with unstabilized tissues where abscissal pI shifts were a common feature in 2‐D gels. Of the 588 matched proteins separated on 2‐D gels comparing stabilized and unstabilized tissues, 53 proteins exhibited greater than twofold differences in spot volume (ANOVA, p<0.05). Phosphoprotein‐specific staining was corroborated by the identification of 16 phosphoproteins by nano‐LC MS/MS and phosphotyrosine kinase activity assay.  相似文献   

6.
Extracellular ATP has been known to modulate various cellular responses including mitogenesis, secretion and morphogenic activity in neuronal cells. In the ATP-induced morphogenic activity, focal adhesion kinase(s) such as Fak have been suggested to play a critical role. Binding of ATP to its specific cell surface receptor in PC12 cells induces phospholipase D (PLD) activity. However, the role of PLD on ATP-induced Fak activation in PC12 cells remains unclear. In this study, we investigated the role of PLD on the ATP-induced Fak activation and paxillin phosphorylation using two established cell lines: wild type PLD2- and lipase-inactive mutant PLD2-inducible PC12 cells. Stimulation of cells with ATP caused PLD2 activation via classical protein kinase C activation. ATP also induced Fak activation, and paxillin phosphorylation, and were dramatically reduced by wild type PLD2 overexpression but not by lipase-inactive mutant PLD2 overexpression. When the PC12 cells were pretreated with propranolol, a specific inhibitor for phosphatidic acid phosphohydrolase resulting in the accumulation of PA, ATP-induced Fak activation and paxillin phosphorylation were also reduced. We found that inhibition of tyrosine phosphatases by pervanadate completely blocked PLD2-dependent Fak and paxillin dephosphorylation. Taken together, we suggest that PLD2 activity might play a negative role in ATP-induced Fak and paxillin phosphorylation possibly through tyrosine phosphatases.  相似文献   

7.
Liu J  Cai Y  Wang J  Zhou Q  Yang B  Lu Z  Jiao L  Zhang D  Sui S  Jiang Y  Ying W  Qian X 《Electrophoresis》2007,28(23):4348-4358
Because reversible protein phosphorylation is central to biological regulation, many methods have been developed for the systematic parallel analysis of the phosphorylation status of large sets of proteins. To directly survey the extent of protein phosphorylation and the distribution of phosphoproteins in biological systems, we used a phosphoprotein staining method, Pro-Q Diamond dye, for the high-throughput identification of phosphoproteins. The specificity of the method was validated with protein standards and subsequently applied to an analysis of total protein from human liver Chang's cells. Proteins were separated by 2-DE, then sequentially stained with Pro-Q Diamond and Coomassie Blue G-250. After image analysis, the proteins in gel spots containing phosphoproteins were identified by MALDI-TOF/TOF-MS. A total of 269 phosphoproteins were identified, and 27 were known phosphoproteins in the SwissProt database. By comparing the relative volumes of the phosphoprotein map and the total protein map, the extent of protein phosphorylation was observed. The phosphoprotein staining method combined with 2-DE also detected polymorphisms of the phosphoproteins, and could distinguish highly abundant, but slightly phosphorylated proteins from less abundant, highly phosphorylated ones. We conclude that the phosphoprotein staining method can be used for global, quantitative phosphorylation detection.  相似文献   

8.
9.
Phosphorylation is one of the most common posttranslational modifications of proteins in eukaryotic cells; it plays an important role in a wide spectrum of biological processes. This makes its study an important task for understanding cell functioning mechanisms. The aim of phosphoproteomics is a global mass spectral analysis of the phosphoprotein composition of cells, i.e., phosphoproteome. Nowadays, new effective methods are actively developed, which succeed not only in the detection of phosphorylated proteins but also in the determination of phosphorylated amino acid residues (phosphorylation sites) and in the quantitative comparison of phosphorylation among several specimens. Despite the analysis of protein phosphorylation remains a complicated problem, the available methods nowadays allow the detection of thousands of phosphorylation sites in the very same experiment. The present review covers the main methods utilized in contemporary phosphoproteomics: phosphoprotein and phosphopeptides enrichment as well as the mass spectrometric analysis of protein phosphorylation.  相似文献   

10.
Protein kinases control the function of about one third of cellular proteins by catalysing the transfer of the γ-phosphate group of ATP onto their substrate proteins. Protein phosphatases counter this action and also control the activation status of many kinases. Cellular responses to environmental changes, or signalling events, temporarily tilt the balance of protein phosphorylation and dephosphorylation to one side or the other. The identification of protein-kinase-substrate pairs and substrate-phosphatase pairs is critical to understanding cell function and how cells respond to environmental changes. Identification of these substrate-enzyme pairs is non-trivial, because of the structural and mechanistic conservation of the catalytic cores of protein kinases. In this tutorial review we review recent progress towards identifying protein-kinase-substrate pairs by emphasising the use of chemical genetics and purpose-designed ATP analogues that target one particular protein kinase. In addition, we discuss activity-based chemical profiling approaches, based on ATP analogues, for the detection of active kinases.  相似文献   

11.
The release of neurotransmitter is regulated in the processes of membrane docking and membrane fusion between synaptic vesicles and presynaptic plasma membranes. Synaptic vesicles contain a diverse set of proteins that participate in these processes. Small GTP-binding proteins exist in the synaptic vesicles and are suggested to play roles for the regulation of neurotransmitter release. We have examined a possible role of GTP-binding proteins in the regulation of protein phosphorylation in the synaptic vesicles. GTPgammaS stimulated the phosphorylation of 46 kDa protein (p46) with pI value of 5.0-5.2, but GDPbetaS did not. The p46 was identified as protein interacting with C-kinase 1 (PICK-1) by MALDI-TOF mass spectroscopy analysis, and anti-PICK-1 antibody recognized the p46 spot on 2-dimensional gel electrophoresis. Rab guanine nucleotide dissociation inhibitor (RabGDI), which dissociates Rab proteins from SVs, did not affect phosphorylation of p46. Ca(2+)/calmodulin (CaM), which causes the small GTP-binding proteins like Rab3A and RalA to dissociate from the membranes and stimulates CaM-dependent protein kinase(s) and phosphatase, strongly stimulate the phosphorylation of p46 in the presence of cyclosporin A and cyclophylin. However, RhoGDI, which dissociates Rho proteins from membranes, reduced the phosphorylation of p46 to the extent of about 50%. These results support that p46 was PICK-1, and its phosphorylation was stimulated by GTP and Ca(2+)/CaM directly or indirectly through GTP-binding protein(s) and Ca(2+)/CaM effector protein(s). The phosphorylation of p46 (PICK-1) by GTP and Ca(2+)/CaM may be important for the regulation of transporters and neurosecretion.  相似文献   

12.
Phosphorylation is the most widely studied posttranslational modification (PTM) and is an important regulatory mechanism used during cellular responses to external stimuli. The kinases and phosphatases that regulate protein phosphorylation are known to be affected in many human diseases. Cigarette smoking causes cardiovascular disease (CVD). Endothelial cells play a pivotal role in CVD initiation and development; however, there have been limited investigations of the specific signaling cascades and protein phosphorylations activated by cigarette smoke in endothelial cells. The purpose of this research was to better understand the differential protein phosphorylation in endothelial cells stimulated with extracts of cigarette smoke total particulate matter (CS-TPM) in vitro. Human microvascular endothelial cells were exposed in vitro to CS-TPM at concentrations that were shown to cause endothelial cell dysfunction. The phosphorylated proteins were isolated using phosphoprotein-specific chromatography, followed by enzymatic digestion and nano-flow capillary liquid chromatography (ncap-LC) coupled to high resolution mass spectrometry. This study putatively identified 94 proteins in human microvascular endothelial cells that were differentially bound to a phosphoprotein-specific chromatography column following exposure to CS-TPM suggesting differential phosphorylation. Pathway analysis has also been conducted and confirmations of several observations have been made using immunoaffinity-based techniques (e.g., Western blotting). Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Phosphorylation and dephosphorylation of peptides by kinases and phosphatases is essential for signal transduction in biological systems, and many diseases involve abnormal activities of these enzymes. Herein, we introduce amphiphilic calixarenes as key components for supramolecular, phosphorylation‐responsive membrane transport systems. Dye‐efflux experiments with liposomes demonstrated that calixarenes are highly active counterion activators for established cell‐penetrating peptides, with EC50 values in the low nanomolar range. We have now found that they can even activate membrane transport of short peptide substrates for kinases involved in signal transduction, whereas the respective phosphorylated products are much less efficiently transported. This allows regulation of membrane transport activity by protein kinase A (PKA) and protein kinase C (PKC), as well as monitoring of their activity in a label‐free kinase assay.  相似文献   

14.
Addition of human plasma low-density lipoproteins (LDL) to intact human erythrocytes induces the erythrocytes to undergo morphologic transition from biconcave disks to echinocytes and spherocytes. The transformation is time-dependent. Two hours are required before echinocytes are detected by scanning electron microscopy. After two hours, LDL also decrease the phosphate content of spectrin by 40% relative to the control, suggesting that these lipoproteins modulate cell shape by influencing phosphorylation-dephosphorylation of a membrane-associated cytoskeletal protein. LDL do not induce depletion of intracellular adenosine triphosphate (ATP), nor do they inhibit cyclic adenosine monophosphate-independent protein kinases which phosphorylate spectrin. LDL stimulate membrane-bound phosphatases by a factor of two, thereby reducing the amount of phosphate covalently bound to membrane proteins. The observed effects are specific for LDL. High-density lipoproteins (HDL) do not stimulate dephosphorylation of spectrin or alter erythrocyte morphology. However, HDL protect the erythrocytes against LDL-induced alterations. These data suggest that the circulating lipoproteins have a role in maintaining erythrocyte morphology by regulating the extent of phosphorylation of spectrin.  相似文献   

15.
Amongst different posttranslational events involved in cellular-signaling pathways, phosphorylation and dephosphorylation of proteins are the most prevalent. Aberrant regulations in the cellular phosphoproteome network are implicated in most major human diseases. Consequently, kinases and phosphatases are two of the most important groups of drug targets in medicinal research today. A major challenge in the understanding of protein phosphorylation and dephosphorylation is the sheer complexity of the phosphoproteome network and the lack of tools capable of studying protein phosphorylation and dephosphorylation as they occur in cells. We highlight herein various chemical biology tools that have emerged in the last decade for such studies. First, we discuss the use of small-molecule mimics of phosphoamino acids and their use in elucidating the function of protein phosphorylation and dephosphorylation. We also introduce recent advances in the field of activity-based protein profiling (ABPP) for proteome-wide detection of protein phosphorylation and dephosphorylation. We next discuss the key concepts in the design of peptide- and protein-based biosensors capable of real-time reporting of phosphorylation/dephosphorylation events. Finally, we highlight the application of peptide and small-molecule microarrays (SMMs), and their applications in high-throughput screening and discovery of new compounds related to phosphorylation/dephosphorylation.  相似文献   

16.
Arsenic is well documented as a chemotherapeutic agent capable of inducing cell death while at the same time is considered a human carcinogen and an environmental contaminant. Although arsenic toxicity is well known and has formed an impressive literature over the time, little is known about how its effects are exerted at the proteome level. Protein phosphorylation is an important post-translational modification involved in the regulation of cell signaling and likely is altered by arsenic treatment. Despite the importance of phosphorylation for many regulatory processes in cells, the identification and characterization of phosphorylation, as effected by arsenic through mass spectrometric detection, are not fully studied. Here, we identify phosphorylated proteins, which are related to post-translational modifications after phenylarsine oxide (PAO) inoculation to HeLa cells. PAO was chosen because of its high cytotoxicity, measured earlier in these labs. In this study, size exclusion chromatography coupled to inductively coupled plasma mass spectrometry (SEC-ICP-MS) is used to establish several molecular weight fractions with phosphorylated proteins by monitoring 31P signal vs. time via ICP-MS. SEC-ICP-MS fractions are collected and then separated by the nano-LC-CHIP/ITMS system for peptide determination. Spectrum Mill and MASCOT protein database search engines are used for protein identification. Several phosphorylation sites and proteins related to post-translational modifications are also identified.  相似文献   

17.
The protein tyrosine phosphatases(PTPs) comprise a family of enzymes that specifically dephosphorylate tyrosyl residues. Among them, SHP-1 has been regarded as one of the best validated intracellular tyrosine phosphatases. Downregulation of SHP-1 has shown remarkable efficacy in improving insulin sensitivity in vivo in insulin signaling pathway. In this study, we found the role of Candesartan cilexetil targeting at SHP-1. The results indicate that Candesartan cilexetil was a competitive inhibitor to SHP-1(IC50=85.6 μmol/L and Ki=24 μmol/L). We also found that Candesartan cilexetil was more sensitive towards SHP-1 compared with other PTPs. Through the consequence of Western blotting, it showed that Candesartan cilexetil can strengthen the level of tyrosine phosphorylation of several key cellular proteins[such as insulin receptor(IR), insulin receptor substrate(IRS) and ERK] in insulin signaling pathway in HepG2 cells and improve the insulin sensitivity through inhibiting the protein phosphorylation of SHP-1. These findings showed that Candesartan cilexetil might be an important inhibitor of SHP-1 and had a great application potential in the treatment of diabetes through inhibiting the level of SHP-1 in insulin signaling pathway.  相似文献   

18.
Sunyer B  Diao W  Lubec G 《Electrophoresis》2008,29(12):2593-2602
Learning and memory depend on molecular mechanisms involving the protein machinery. Recent evidence proposes that post-translational modifications (PTMs) play a major role in these cognitive processes. PTMs including phosphorylation of serine, threonine, and tyrosine are already well-documented to play a role for synaptic plasticity of the brain, neurotransmitter release, vesicle trafficking and synaptosomal or synaptosomal-associated proteins are substrates of a series of specific protein kinases and their counterparts, protein phosphatases. But protein phosphorylation is only one out of many possible PTMs and first work shows a role of palmitoylation as well as glycosylation for proteins involved in memory formation. Recent technology may now allow reliable detection and even quantification of PTMs of proteins involved in the cognitive system. This will contribute to the understanding of mechanisms for learning and memory formation at the chemical level and has to complement determination of protein levels and indeed determination of protein expression per se generates limited information. The many other PTMs expected including protein nitrosylation and alkylation will even represent targets for pharmacological interventions but in turn increase the complexity of the system. Nevertheless, determination of the presence and the function of PTMs is mandatory and promising cognitive research at the protein chemical level.  相似文献   

19.
Abundant phosphorylation events control the activity of nuclear proteins involved in gene regulation and DNA repair. These occur mostly on disordered regions of proteins, which often contain multiple phosphosites. Comprehensive and quantitative monitoring of phosphorylation reactions is theoretically achievable at a residue-specific level using 1H-15N NMR spectroscopy, but is often limited by low signal-to-noise at pH>7 and T>293 K. We have developed an improved 13Cα-13CO correlation NMR experiment that works equally at any pH or temperature, that is, also under conditions at which kinases are active. This allows us to obtain atomic-resolution information in physiological conditions down to 25 μm . We demonstrate the potential of this approach by monitoring phosphorylation reactions, in the presence of purified kinases or in cell extracts, on a range of previously problematic targets, namely Mdm2, BRCA2, and Oct4.  相似文献   

20.
The diversity of distinct covalent forms of proteins (the proteome) greatly exceeds the number of proteins predicted by DNA coding capacities owing to directed posttranslational modifications. Enzymes dedicated to such protein modifications include 500 human protein kinases, 150 protein phosphatases, and 500 proteases. The major types of protein covalent modifications, such as phosphorylation, acetylation, glycosylation, methylation, and ubiquitylation, can be classified according to the type of amino acid side chain modified, the category of the modifying enzyme, and the extent of reversibility. Chemical events such as protein splicing, green fluorescent protein maturation, and proteasome autoactivations also represent posttranslational modifications. An understanding of the scope and pattern of the many posttranslational modifications in eukaryotic cells provides insight into the function and dynamics of proteome compositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号