首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A new sterically hindered tetradentate tripodal ligand (Me2-etpy) and its labeled analogue having deuterated methylene groups (d4-Me2-etpy) were synthesized, where Me2-etpy is bis(6-methyl-2-pyridylmethyl)(2-pyridylethyl)amine. Copper(I) complexes [Cu(Me2-etpy or d4-Me2-etpy)]+ (1 and 1-d4, respectively) reacted with dioxygen at -80 degrees C in acetone to give bis(mu-oxo)dicopper(III) complexes [Cu2(O)2(Me2-etpy or d4-Me2-etpy)2](2+) (1-oxo and 1-d4-oxo, respectively), the latter of which was crystallographically characterized. Unlike a bis(mu-oxo)dicopper(III) complex with a closely related Me2-tpa ligand having a 2-pyridylmethyl pendant, 1-oxo possessing a 2-pyridylethyl pendant is not fully formed even under 1 atm of O2 at -80 degrees C and is very reactive toward the oxidation of the supporting ligand. Thermal decomposition of 1-oxo gave an N-dealkylated ligand in yield approximately 80% based on a dimer and a corresponding aldehyde. The deuterated ligand d4-Me2-etpy greatly stabilizes the bis(mu-oxo)dicopper(III) complex 1-d4-oxo, indicating that the rate determining step of the N-dealkylation is the C-H bond cleavage from the methylene group. The reversible conversion between 1-d4 and 1-d4-oxo in acetone is dependent on the temperature, and the thermodynamic parameters (DeltaH and DeltaS) of the equilibrium were determined to be -53 +/- 2 kJ mol(-1) and -187 +/- 10 J mol(-1) K(-1), respectively. The effect of the 2-pyridylethyl pendant in comparison with the 2-pyridylmethyl and 6-methyl-2-pyridylmethyl pendants on the physicochemical properties of the copper(I) and bis(mu-oxo)dicopper(III) species is discussed.  相似文献   

2.
The preference for the formation of a particular Cu 2O 2 isomer coming from (ligand)-Cu (I)/O 2 reactivity can be regulated with the steric demands of a TMPA (tris(2-pyridylmethyl)amine) derived ligand possessing 6-pyridyl substituents on one of the three donor groups of the tripodal tetradentate ligand. When this substituent is an -XHR group (X = N or C) the traditional Cu (I)/O 2 adduct forms a (mu-1,2)peroxodicopper(II) species ( A). However, when the substituent is the slightly bulkier XR 2 moiety {aryl or NR 2 (R not equal H)}, a bis(mu-oxo)dicopper(III) structure ( C) is favored. The reactivity of one of the bis(mu-oxo)dicopper(III) species, [{(6tbp)Cu (III)} 2(O (2-)) 2] (2+) ( 7-O 2 ) (6tbp = (6- (t)Bu-phenyl-2-pyridylmethyl)bis(2-pyridylmethyl)amine), was probed, and for the first time, exogenous toluene or ethylbenzene hydrocarbon oxygenation reactions were observed. Typical monooxygenase chemistry occurred: the benzaldehyde product includes an 18-O atom for toluene/ 7- (1) (8)O 2 reactivity, and a H-atom abstraction by 7-O 2 is apparent from study of its reactions with ArOH substrates, as well as the determination of k H/ k D approximately 7 in the toluene oxygenation (i.e., PhCH 3 vs PhCD 3 substrates). Proposed courses of reaction are presented, including the possible involvement of PhCH 2OO (*) and its subsequent reaction with copper(I) complex, the latter derived from dynamic solution behavior of 7-O 2 . External TMPA ligand exchange for copper in 7-O 2 and O-O bond (re)formation chemistry, along with the ability to protonate 7-O 2 and release of H 2O 2 indicate the presence of an equilibrium between [{(6tbp)Cu (III)} 2(O (2-)) 2] (2+) ( 7-O 2 ) and a (mu-1,2)peroxodicopper(II) form.  相似文献   

3.
Copper(II) complexes 1a and 1b, supported by tridentate ligand bpa [bis(2-pyridylmethyl)amine] and tetradentate ligand tpa [tris(2-pyridylmethyl)amine], respectively, react with cumene hydroperoxide (CmOOH) in the presence of triethylamine in CH(3)CN to provide the corresponding copper(II) cumylperoxo complexes 2a and 2b, the formation of which has been confirmed by resonance Raman and ESI-MS analyses using (18)O-labeled CmOOH. UV-vis and ESR spectra as well as DFT calculations indicate that 2a has a 5-coordinate square-pyramidal structure involving CmOO(-) at an equatorial position and one solvent molecule at an axial position at low temperature (-90 °C), whereas a 4-coordinate square-planar structure that has lost the axial solvent ligand is predominant at higher temperatures (above 0 °C). Complex 2b, on the other hand, has a typical trigonal bipyramidal structure with the tripodal tetradentate tpa ligand, where the cumylperoxo ligand occupies an axial position. Both cumylperoxo copper(II) complexes 2a and 2b are fairly stable at ambient temperature, but decompose at a higher temperature (60 °C) in CH(3)CN. Detailed product analyses and DFT studies indicate that the self-decomposition involves O-O bond homolytic cleavage of the peroxo moiety; concomitant hydrogen-atom abstraction from the solvent is partially involved. In the presence of 1,4-cyclohexadiene (CHD), the cumylperoxo complexes react smoothly at 30 °C to give benzene as one product. Detailed product analyses and DFT studies indicate that reaction with CHD involves concerted O-O bond homolytic cleavage and hydrogen-atom abstraction from the substrate, with the oxygen atom directly bonded to the copper(II) ion (proximal oxygen) involved in the C-H bond activation step.  相似文献   

4.
Polydentate ligands (6-R1-2-pyridylmethyl)-R2(R1= NHCOtBu, R2= bis(2-pyridylmethyl)amine L1, bis(2-(methylthio)ethyl)amine L2 and N(CH2CH2)2S L3) form mononuclear zinc(II) complexes with intramolecular amide oxygen coordination and a range of coordination environments. Thus, the reaction of Zn(ClO4)2.6H2O with L1-3 in acetonitrile affords [(L)Zn](ClO4)2(L=L1, 1; L2, 2) and [(L3)Zn(H2O)(NCCH3)](ClO4)2 3. The simultaneous amide/water binding in resembles the motif that has been proposed to be involved in the double substrate/nucleophile Lewis acidic activation and positioning mechanism of amide bond hydrolysis in metallopeptidases. X-ray diffraction, 1H and 13C NMR and IR data suggests that the strength of amide oxygen coordination follows the trend 1>2 >3. L1-3 and undergo cleavage of the tert-butylamide upon addition of Me4NOH.5H2O (1 equiv.) in methanol at 50(1)degrees C. The rate of amide cleavage follows the order 1> 2> 3, L1-3. The extent by which the amide cleavage reaction is accelerated in 1-3 relative to the free ligands, L1-3, is correlated with the strength of amide oxygen binding and Lewis acidity of the zinc(II) centre in deduced from the X-ray, NMR and IR studies.  相似文献   

5.
The first silicon cage anion, tris{bis[bis(trimethylsilyl)methyl](methyl)silyl}tetrasilatetrahedranide (6-), has been synthesized by the reaction of tetrakis{bis[bis(trimethylsilylmethyl](methyl)silyl}tetrasilatetrahedrane with potassium graphite in diethyl ether by reductive cleavage of exocyclic Si-Si bond. The structural characterization of K+(18-crown-6).6- has been achieved by X-ray crystallography, showing that 6- is a separated ion pair and the tetrasilatetrahedranide moiety has a significantly distorted tetrahedrane skeleton containing one inverted tetrahedral (umbrella type) silicon atom. The four silicon atoms in the Si4 skeleton are equivalent on the NMR time scale due to the migration of the Dis2MeSi substituent.  相似文献   

6.
The monoanionic N(4)O ligand N-methyl-N,N'-bis(2-pyridylmethyl)ethylenediamine-N'-acetate (mebpena(-)) undergoes oxidative C-N bond cleavage in the presence of Co(II) and O(2). The two resultant fragments are coordinated to the metal ion in the product [Co(III)(2-pyridylformate)(mepena)]ClO(4) (mepena(-) = N-methyl-N'-(2-pyridylmethyl)ethylenediamine-N'-acetato). Bond cleavage does not occur in the presence of chloride ions and [Co(III)(mebpena)Cl](+), containing intact mebpena(-), can be isolated. The oxidative instability of the mebpena(-) in the presence of Co(II) and air stands in contrast to the oxidative stability of the family of very closely related penta- and hexa-dentate ligands in their cobalt complexes. Cyclic voltammetry on the matched pair [Co(III)Cl(mebpena)](+) and [Co(II)Cl(bztpen)](+), bztpen = N-benzyl-N,N',N'-tris(2-pyridylmethyl)ethylenediamine, shows that substitution of a pyridine donor for a carboxylato donor results in a relatively small cathodic shift of 150 mV in the E°(Co(II)/Co(III)) oxidation potential, presumably this is enough to determine the contrasting metal oxidation state in the complexes isolated under ambient conditions. DFT calculations support a proposal that [Co(II)(mebpena)](+) reacts with O(2) to form a Co(III)-superoxide complex which can abstract an H atom from a ligand methylene C atom as the initial step towards the observed oxidative C-N bond cleavage.  相似文献   

7.
Zhang L  Liu Z  Li H  Fang G  Barry BD  Belay TA  Bi X  Liu Q 《Organic letters》2011,13(24):6536-6539
A novel copper-mediated chelation-assisted ortho C-H nitration of (hetero)arenes has been developed for the first time, which used dioxygen as terminal oxidant and 1,2,3-TCP as solvent, leading to the synthesis of nitroaromatics with excellent regioselectivity and in good yields. Mechanistic investigations indicate a mechanism involving a four-centered transition state, with simultaneous cleavage of an ortho C-H bond and a N-O bond of the nitrate anion on the 2-arylpyridine-coordinated copper(II) complex.  相似文献   

8.
Hydrothermal synthesis has afforded [Co3(oba)3(bpmp)2]n [oba = oxybis(benzoate), bpmp = bis(4-pyridylmethyl)piperazine], a chiral coordination polymer possessing an aesthetic self-catenated three-dimensional structure with an unprecedented 8-connected uninodal 4(4)5(17)6(7) topology. The network is formed by the junction of {Co3O2} clusters into three different homochiral interlocked helical motifs, linked by one type of "infinite" chain pattern. Antiferromagnetic exchange is observed within the {Co3O2} clusters.  相似文献   

9.
The reaction of [Ni2(OH)2(Me2-tpa)2]2+ (1) (Me2-tpa = bis(6-methyl-2-pyridylmethyl)(2-pyridylmethyl)amine) with H2O2 causes oxidation of a methylene group on the Me2-tpa ligand to give an N-dealkylated ligand and oxidation of a methyl group to afford a ligand-based carboxylate and an alkoxide as the final oxidation products. A series of sequential reaction intermediates produced in the oxidation pathways, a bis(mu-oxo)dinickel(III) ([Ni2(O)2(Me2-tpa)2]2+ (2)), a bis(mu-superoxo)dinickel(II) ([Ni2(O2)2(Me2-tpa)2]2+ (3)), a (mu-hydroxo)(mu-alkylperoxo)dinickel(II) ([Ni2(OH)(Me2-tpa)(Me-tpa-CH2OO)]2+ (4)), and a bis(mu-alkylperoxo)dinickel(II) ([Ni2(Me-tpa-CH2OO)2]2+ (5)), was isolated and characterized by various physicochemical measurements including X-ray crystallography, and their oxidation pathways were investigated. Reaction of 1 with H2O2 in methanol at -40 degrees C generates 2, which is extremely reactive with H2O2, producing 3. Complex 2 was isolated only from disproportionation of the superoxo ligands in 3 in the absence of H2O2 at -40 degrees C. Thermal decomposition of 2 under N2 generated an N-dealkylated ligand Me-dpa ((6-methyl-2-pyridylmethyl)(2-pyridylmethyl)amine) and a ligand-coupling dimer (Me-tpa-CH2)2. The formation of (Me-tpa-CH2)2 suggests that a ligand-based radical Me-tpa-CH2* is generated as a reaction intermediate, probably produced by H-atom abstraction by the oxo group. An isotope-labeling experiment revealed that intramolecular coupling occurs for the formation of the coupling dimer. The results indicate that the rebound of oxygen to Me-tpa-CH2* is slower than that observed for various high-valence bis(mu-oxo)dimetal complexes. In contrast, the decomposition of 2 and 3 in the presence of O2 gave carboxylate and alkoxide ligands, respectively (Me-tpa-COO- and Me-tpa-CH2O-), instead of (Me-tpa-CH2)2, indicating that the reaction of Me-tpa-CH2* with O2 is faster than the coupling of Me-tpa-CH2* to generate ligand-based peroxyl radical Me-tpa-CH2OO*. Although there is a possibility that the Me-tpa-CH2OO* species could undergo various reactions, one of the possible reactive intermediates, 4, was isolated from the decomposition of 3 under O2 at -20 degrees C. The alkylperoxo ligands in 4 and 5 can be converted to a ligand-based aldehyde by either homolysis or heterolysis of the O-O bond, and disproportionation of the aldehyde gives a carboxylate and an alkoxide via the Cannizzaro reaction.  相似文献   

10.
Iron(II)-phenylpyruvate complexes of tetradentate tris(6-methyl-2-pyridylmethyl)amine (6-Me3-TPA) and tridentate benzyl bis(2-quinolinylmethyl)amine (Bn-BQA) were prepared to gain insight into C-C bond cleavage catalyzed by dioxygenase enzymes. The complexes we have prepared and characterized are [Fe(6-Me3-tpa)(prv)][BPh4] (1), [Fe2(6-Me3-tpa)2(pp)][(BPh4)2] (2), and [Fe2(6-Me3-tpa)2(2'-NO2-pp)][(BPh4)2] (3), [Fe(6-Me3-tpa)(pp-Me)][BPh4] (4), [Fe(6-Me3-tpa)(CN-pp-Et)][BPh4] (5), and [Fe(Bn-bqa)(pp)] (8), in which PRV is pyruvate, PP is the enolate form of phenylpyruvate, 2'-NO2-PP is the enolate form of 2'-nitrophenylpyruvate, PP-Me is the enolate form of methyl phenylpyruvate, and CN-PP-Et is the enolate form of ethyl-3-cyanophenylpyruvate. The structures of mononuclear complexes 1 and 5 were determined by single-crystal X-ray diffraction. Both the PRV ligand in 1 and the CN-PP-Et ligand in 5 bind to the iron(II) center in a bidentate manner and form 5-membered chelate rings, but the alpha-keto moiety is in the enolate form in 5 with concomitant loss of a C-H(beta) proton. The PP ligands of 2, 3, 4, and 8 react with dioxygen to form benzaldehyde and oxalate products, which indicates that the C2-C3 PP bond is cleaved, in contrast to cleavage of the C1-C2 bond previously observed for complexes that do not contain alpha-ketocarboxylate ligands in the enolate form. These reactions serve as models for metal-containing dioxygenase enzymes that catalyze the cleavage of aliphatic C-C bonds.  相似文献   

11.
A gold electrode modified with copper complexes containing a tridentate aromatic amine compound (bis(6-methyl-2-pyridylmethyl)amine ethyl sulfide, which is a model for the nitrite reduction centre of copper-containing nitrite reductase, catalyzed electrochemically the reduction of nitrite to nitrogen monoxide under acidic conditions.  相似文献   

12.
Polynuclear copper complexes with two or three Cu(BPA) (BPA, bis(2-pyridylmethyl)amine) motifs, [Cu2(mTPXA)Cl4]3 H2O (1), [Cu2(pTPXA)Cl4]3 H2O (2), [Cu3(HPTAB)Cl5]Cl3 H2O (3) (mTPXA = N,N,N',N'-tetra-(2-pyridylmethyl)-m-xylylene diamine; pTPXA = N,N, N',N'-tetra-(2-pyridylmethyl)-p-xylylenediamine; HPTAB = N,N,N',N',N',N'-hexakis(2-pyridylmethyl)-1,3,5-tris-(aminomethyl)benzene) have been synthesized and characterized. The crystal structures of compounds 2 and 3 showed each Cu(BPA) motif had a 4+1 square-pyramidal coordination environment with one chloride occupying the apical position and three N atoms from the same BPA moiety together with another Cl atom forming the basal plane. Fluorescence and circular dichroism (CD) spectroscopy studies indicated that the DNA binding followed an order of 3>2>1 in the compounds. These complexes cleave plasmid pUC19 DNA by using an oxidative mechanism with mercaptopropionic acid (MPA) as the reductant under aerobic conditions. Dinuclear Cu2+ complexes 1 and 2 showed much higher cleavage efficiency than their mononuclear analogue [Cu(bpa)Cl2] at the same [Cu2+] concentration, suggesting a synergistic effect of the Cu2+ centers. Moreover, the meta-dicopper centers in complex 1 facilitated the formation of linear DNA. Interestingly, the additional copper center to the meta-dicopper motif in complex 3 decreased the cleavage efficacy of meta-dicopper motif in complex 1, although it is able to cleave DNA to the linear form at higher [Cu2+] concentrations. Therefore, the higher DNA binding ability of complex 3 did not lead to higher cleavage efficiency. These findings have been correlated to the DNA binding mode and the ability of the Cu2+ complexes to activate oxygen (O2). This work is a good example of the rational design of multinuclear Cu2+ artificial nuclease and the activity of which can be manipulated by the geometry and the number of metal centers.  相似文献   

13.
The electrochemical reduction of p-nitrophenyl sulfenyl chloride, o-nitrophenyl sulfenyl chloride as well as bis(4-nitrophenyl) disulfide and bis(2-dinitrophenyl) disulfide was investigated in acetonitrile at an inert electrode. Reduction standard potentials as well standard heterogeneous electron-transfer rate constants have been determined using convolution analysis. An unexpected big difference in the thermodynamics and kinetics of the initial electron-transfer process as well as a striking change in the reductive cleavage mechanism of the S-Cl bond as a function of the nitro group position on the aryl ring of the aryl sulfenyl chloride is observed. A computational study at the B3LYP level shows that this difference in behavior is due to the through-space nonbonded S...O interaction in the o-nitrophenyl sulfenyl chloride.  相似文献   

14.
A series of dichloroferrous complexes with ligands derived from the tris(2-pyridylmethyl)amine tripod has been prepared and characterized. The X-ray crystal structures of the complexes [bis(2-bromo-6-pyridylmethyl)(2-pyridylmethyl)amine]Fe(II)Cl(2) ((Br(2)TPA)Fe(II)Cl(2)) and [bis(2-phenyl-6-pyridylmethyl)(2-pyridylmethyl)amine]Fe(II)Cl(2), ((Ph(2)TPA)Fe(II)Cl(2)) are reported. In these complexes, the tripod coordinates in the tridentate mode, with a substituted pyridyl arm dangling away from the metal. Both complexes have a trigonal bipyramidal iron center with two equatorial chloride ions. Their crystal structures are compared with those of the [tris(2-pyridylmethyl)amine]Fe(II)Cl(2) and [(2-bromo-6-pyridylmethyl)bis(2-pyridylmethyl)amine]Fe(II)Cl(2) complexes ((TPA)Fe(II)Cl(2) and (BrTPA)Fe(II)Cl(2), respectively) in which the ligand coordinates in the tetradentate mode. For all complexes, the metal to ligand distances are systematically above the value of 2.0 A, and (1)H NMR displays paramagnetically shifted resonances with short relaxation times. This indicates that the iron is in a high-spin state. Electric conductivity measurements show that, for all complexes, the measured values lie within the same range, significantly below those expected for ionic complexes. Together with the analysis of the UV-visible and NMR data, this strongly suggests that the coordination mode of the tripod is retained in solution.  相似文献   

15.
Four tripodal ligands with an N(3)O coordination sphere were synthesized: (2-hydroxy-3-tert-butyl-5-nitrobenzyl)bis(2-pyridylmethyl)amine (LNO(2)H), (2-hydroxy-3-tert-butyl-5- fluorobenzyl)bis(2-pyridylmethyl)amine (LFH), (2-hydroxy-3,5-di-tert-butylbenzyl)bis(2-pyridylmethyl)amine (LtBuH) and (2-hydroxy-3-tert-butyl-5-methoxybenzyl)bis(2-pyridylmethyl)amine (LOMeH). Their square-pyramidal copper(II) complexes, in which the phenol subunit occupies an axial position, were prepared and characterized by X-ray crystallography and UV/Vis and EPR spectroscopy. The phenolate moieties of the copper(II) complexes of LtBuH and LOMeH were electrochemically oxidized to phenoxyl radicals. These complexes are EPR-active (S=1), highly stable (k(decay)=0.008 min(-1) for [Cu(II)(LOMe(.))(CH(3)CN)](2+)) and stoichiometrically oxidise benzyl alcohol. Two additional tripodal ligands providing an N(2)O(2) coordination sphere were also studied: (2-pyridylmethyl)(2-hydroxy-3-tert-butyl-5-methoxybenzyl)(2-hydroxy-3-tert-butyl-5-nitrobenzyl)amine (L'OMeNO(2)H(2)) and (2-pyridylmethyl)bis(2-hydroxy-3-tert-butyl-5- methoxy)benzylamine (L'OMe(2)H(2)). Their copper(II) complexes were isolated as dimers ([Cu(2II)(L'OMe(2))(2)], [Cu(2II)(L'OMeNO(2))(2)]) that are converted to monomers on addition of pyridine. The complexes were investigated by X-ray crystallography and UV/Vis and EPR spectroscopy. Their one-electron electrochemical oxidation leads to copper(II)-phenoxyl systems that are less stable than those of the N(3)O complexes. The N(2)O(2) complexes are more reactive than the N(3)O analogues: they aerobically oxidize benzyl alcohol to benzaldehyde at a higher rate, as well as ethanol to acetaldehyde (40-80 turnovers).  相似文献   

16.
The high catalytic reactivity of homoleptic tris(alkyl) lanthanum La{C(SiHMe2)3}3 is highlighted by C?O bond cleavage in the hydroboration of esters and epoxides at room temperature. The catalytic hydroboration tolerates functionality typically susceptible to insertion, reduction, or cleavage reactions. Turnover numbers (TON) up to 10 000 are observed for aliphatic esters. Lanthanum hydrides, generated by reactions with pinacolborane, are competent for reduction of ketones but are inert toward esters. Instead, catalytic reduction of esters requires activation of the lanthanum hydride by pinacolborane.  相似文献   

17.
The synthetic route toward new unsymmetric compartmental "end-off" Schiff-base ligands in a straightforward two-step reaction of 2,6-diformyl-4-methylphenol and two different amine components is presented. To demonstrate the versatility of this method, we have synthesized two different single-Schiff-base proligands, Hbpahmb and Hphmb, utilizing (2-aminoethyl)bis(2-pyridylmethyl)amine and (2-aminomethyl)pyridine, respectively. Subsequent reaction with thiosemicarbazide as the second amine component leads to the novel unsymmetric double-Schiff-base ligands {1-[3-[2-[bis(pyridin-2-ylmethyl)amino]ethyliminomethyl]-2-hydroxy-5-methylphenyl]methylidene}hydrazine carbothioamide (H2bpamptsc) and {1-[3-(pyridin-2-ylmethyliminomethyl)-2-hydroxy-5-methylphenyl]methylidene}hydrazine carbothioamide (H2pmptsc). Both ligands provide two distinctly different coordination pockets: a rigid tridentate N,O,S donor set of the hydrazide compartment versus a rather flexible pentadentate (H2bpamptsc) or tridentate (H2pmptsc) nitrogen-rich chelating side arm. The reaction of the ligand H2bpamptsc with zinc(II) acetate and copper(II) perchlorate yields the heterobinuclear Cu-Zn complex [CuZn(bpamptsc)(mu2,eta1-OAc)(MeCN)](ClO4) (1).  相似文献   

18.
Reduction and oxidation peak potentials of poly[dithio-2,5-(1,3,4-thiadiazole)] were observed in hot γ-butyrolactam (90°C) at −0.1 and 0.1 V vs. Ag respectively. To clarify the redox reaction of the polymer (oligomer), bis(2-methyl-1,3,4-thiadiazoyl)-5,5′-disulfane was synthesized as a model compound and its redox reaction examined by experiment and molecular orbital calculation. Reduction and oxidation peak potentials of this model were observed at −0.65 and 0.2 V respectively, potentials corresponding to the cleavage and formation reactions of the disulfide bond. The bond cleavage reaction was also suggested by molecular orbital calculations. From a comparison of the shape and response of the cyclic voltammogram between the monomeric and polymeric disulfides, it became clear that reduction and oxidation of the polymer meant the cleavage and formation reactions of the disulfide bond respectively, and that the redox reaction is quasi-reversible.  相似文献   

19.
The reaction of an equimolar mixture of N,N′-bis(2-pyridylmethyl)acetamidine (1) and di(tert-butyl)phosphane with dimethylzinc yields dinuclear bis(methylzinc) bis(2-pyridylmethyl)acetamidinate di(tert-butyl)phosphanide (2). A similar protocol allows the preparation of bis(alkylzinc) bis(2-pyridylmethyl)acetamidinate tert-butylamide [zinc-bound methyl (3) or trimethylsilylmethyl group (4)]. The reactions of 3 and 4 with diphenylsilane lead to the formation of insoluble dimeric bis(alkylzinc) N,N′-bis(2-pyridylmethyl)acetamidinate hydrides [zinc-bound methyl (5) or trimethylsilylmethyl group (6)]. These zinc hydrides decompose once dissolved under formation of elemental zinc thus hampering catalytic applications. Molecular structures of [(1)ZnCl2] as well as of the zinc complexes 2 to 6 are discussed.  相似文献   

20.
Three new derivatives of bis(2-pyridylmethyl)amine (DPA) featuring ethylguanidinium (L (1)), propylguanidinium (L (2)), or butylguanidinium (L (3)) pendant groups have been prepared by the reaction of N, N- bis(2-pyridylmethyl)alkane-alpha,omega-diamines with 1 H-pyrazole-1-carboxamidine hydrochloride. The corresponding mononuclear copper(II) complexes were prepared by reacting the ligands with copper(II) nitrate and were isolated as [Cu(LH (+))(OH 2)](ClO 4) 3. xNaClO 4. yH 2O ( C1: L = L (1), x = 2, y = 3; C2: L = L (2), x = 2, y = 4; C3: L = L (3), x = 1, y = 0) following cation exchange purification. Recrystallization yielded crystals of composition [Cu(LH (+))(X)](ClO 4) 3.X ( C1': L = L (1), X = MeOH; C2': L = L (2), X = H 2O; C3': L = L (3), X = H 2O), which were suitable for X-ray crystallography. The crystal structures of C1', C2', and C3' indicate that the DPA moieties of the ligands coordinate to the copper(II) centers in a meridional fashion, with a water or methanol molecule occupying the fourth basal position. Weakly bound perchlorate anions located in the axial positions complete the distorted octahedral coordination spheres. The noncoordinating, monoprotonated guanidinium groups project away from the Cu(II)-DPA units and are involved in extensive charge-assisted hydrogen-bonding interactions with cocrystallized water/methanol molecules and perchlorate anions within the crystal lattices. The copper(II) complexes were tested for their ability to promote the cleavage of two model phosphodiesters, bis( p-nitrophenyl)phosphate (BNPP) and uridine-3'- p-nitrophenylphosphate (UpNP), as well as supercoiled plasmid DNA (pBR 322). While the presence of the guanidine pendants was found to be detrimental to BNPP cleavage efficiency, the functionalized complexes were found to cleave plasmid DNA and, in some cases, the model ribose phosphate diester, UpNP, at a faster rate than the parent copper(II) complex of DPA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号