首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liquid|liquid interfaces provide a natural boundary and a reactive interface where an organic phase is in contact with an aqueous analyte. The selectivity of ion transfer processes at liquid|liquid interfaces can help to provide sensitivity, introduce reactive reagents, or allow analyte accumulation at the electrode surface. In this study, microdroplet deposits of the organic liquid 4‐(3‐phenylpropyl)‐pyridine (PPP) with the ferrocenylmethyl‐dodecyldimethylammonium+ (FDA+) redox system are deposited onto a basal plane pyrolytic graphite electrode and employed to transfer anions from the aqueous into the organic phase. A clear trend of more hydrophobic anions transferring more readily (at more negative potentials) is observed and an ESI‐mass spectrometry method is developed to confirm the transfer. Subsequently, the electrocatalytic oxidation of sulfite, SO32?, within the organic phase and in the presence of different electrolyte anions is investigated. Competition between sulfite transfer and inert anion transfer occurs. The electrocatalytic sulfite oxidation is suppressed in the presence of PF6? and occurs most readily in the presence of the hydrophilic nitrate anion. The resulting process can be classified as an electrocatalytic EIC′‐process (E: electron transfer; I: ion transfer; C: chemical reaction step). The effectiveness of the electrocatalytic process is limited by i) competition during anion transfer and ii) the liquid|liquid interface acting as a diffusion barrier. The analytical sensitivity of the method is limited to ca. 100 μM SO32? (or ca. 8 ppm) and potential approaches for improvement of this limit are discussed.  相似文献   

2.
Chemical reduction of dioxygen in organic solvents for the production of reactive oxygen species or the concomitant oxidation of organic substrates can be enhanced by the separation of products and educts in biphasic liquid systems. Here, the coupled electron and ion transfer processes is studied as well as reagent fluxes across the liquid|liquid interface for the chemical reduction of dioxygen by decamethylferrocene (DMFc) in a dichloroethane-based organic electrolyte forming an interface with an aqueous electrolyte containing alkali metal ions. This interface is stabilized at the orifice of a pipette, across which a Galvani potential difference is externally applied and precisely adjusted to enforce the transfer of different alkali metal ions from the aqueous to the organic electrolyte. The oxygen reduction is followed by H2O2 detection in the aqueous phase close to the interface by a microelectrode of a scanning electrochemical microscope (SECM). The results prove a strong catalytic effect of hydrated alkali metal ions on the formation rate of H2O2, which varies systematically with the acidity of the transferred alkali metal ions in the organic phase.  相似文献   

3.
Single nanoparticle (NP) electrochemistry detection at a micro liquid|liquid interface (LLI) is exploited using the catalyzed oxygen reduction reaction (ORR). In this way, current spikes reminiscent of nanoimpacts were recorded, which corresponded to electrocatalytic enhancement of the ORR by Pt NPs. The nature of the LLI allows exploration of new phenomena in single NP electrochemistry. The recorded impacts result from a bipolar reaction occurring at the Pt NP straddling the LLI. O2 reduction takes place in the aqueous phase, while ferrocene hydride (Fc‐H+; a complex generated upon facilitated interfacial proton transfer by Fc) is oxidized in the organic phase. Ultimately, the role of reactant partitioning, NP bouncing, or the ability of NPs to induce Marangoni effects, is demonstrated.  相似文献   

4.
Gold nanoparticles have been electrodeposited on an electrode through electrogeneration at an ITO|AuCl4? solution in an ionic liquid|aqueous electrolyte three-phase junction. The electrodeposition was carried out by inverted double-pulse potential chronoamperometry. The direct reduction of AuCl4? ions at the electrode is followed by a counterion transfer through the liquid|liquid interface. Contrary to the electrodeposition from a single ionic liquid phase, scanning electron microscopy reveals that the shape of the resulting nanoparticles is highly angular and well-developed with a diameter of 110 ± 30 nm. Catalytic oxidation of glucose on the modified electrode is demonstrated.  相似文献   

5.
H2O2 is a versatile chemical and can be generated by the oxygen reduction reaction (ORR) in proton donor solution in molecular solvents or room temperature ionic liquids (IL). We investigated this reaction at interfaces formed by eleven hydrophobic ILs and acidic aqueous solution as a proton source with decamethylferrocene (DMFc) as an electron donor. H2O2 is generated in colorimetrically detectable amounts in biphasic systems formed by alkyl imidazolium hexafluorophosphate or tetraalkylammonium bis(trifluoromethylsulfonyl)imide ionic liquids. H2O2 fluxes were estimated close to liquid|liquid interface by scanning electrochemical microscopy (SECM). Contrary to the interfaces formed by hydrophobic electrolyte solution in a molecular solvent, H2O2 generation is followed by cation expulsion to the aqueous phase. Weak correlation between the H2O2 flux and the difference between DMFc/DMFc+ redox potential and 2 electron ORR standard potential indicates kinetic control of the reaction.  相似文献   

6.
Pd nanoparticles were synthesized by reduction of palladium acetate by ethanol in systems containing tetrahydrofuran (THF) as dispersion medium and tetradodecylammonium bromide (TDABr) surfactant as stabilizer. The polar phase (ethanol) acts at the same time as reducing agent. THF/TDABr/H2O inverse microemulsions containing micelles of various sizes were also prepared, and the structure of complex liquids was studied by density measurements. Sols containing nanosize Pd0 particles were synthesized within the water droplets of this micellar system. The stabilized Pd0/surfactant system was characterized by density measurements, absorption spectroscopy, and transmission electron microscopy. The stabilizing surfactant layer adsorbed on the liquid/liquid interface and on the surface of the nanoparticles (i.e., the liquid/solid interface) significantly reduced the excess volume for the palladium nanodispersion in organic solvent. Received: 17 July 2000 Accepted: 5 October 2000  相似文献   

7.
The macrocycle-mediated fluxes of several alkali metal cations have been determined in a H2O-CH2Cl2-H2O liquid membrane system. Water-insoluble proton-ionizable macrocycles of the pyridono type were used. The proton-ionizable feature allows the coupling of cation transport to reverse H+ transport. This feature offers promise for the effective separation and/or concentration of alkali metal ions with the metal transport being driven by a pH gradient. A counter anion in the source phase is not co-transported. The desired separation of a particular metal ion involves its selective complexation with the macrocycle, subsequent extraction from the aqueous phase to the organic phase, and exchange for H+ at the organic phase-receiving phase interface. Factors affecting transport which were studied include ring size, source phase pH, and receiving phase pH. Lithium was transported at a rate higher than that of the other alkali metals in both single and competitive systems using a 15-crown-5 pyridono carrier.  相似文献   

8.
Cyclic voltammetry is used to study the role of 5,10,15,20-tetraphenyl-21H,23H-porphine (H2TPP) in the reduction of molecular oxygen by decamethylferrocene (DMFc) at the polarized water|1,2-dichloroethane (DCE) interface. It is shown that this rather slow reaction proceeds remarkably faster in the presence of tetraphenylporphyrin monoacid (H3TPP+) and diacid (H4TPP2+), which are formed in DCE by the successive transfer of two protons from the acidified aqueous phase. A mechanism is proposed, which includes the formation of adduct between H3TPP+ or H4TPP2+ and O2 that is followed by electron transfer from DMFc to the adduct leading to the observed production of DMFc+ and to the regeneration of H2TPP or H3TPP+, respectively.  相似文献   

9.
At room temperature, tetraoctylphosphonium bromide is a viscous ionic liquid, this gel‐like organic phase can be cast over a basal‐plane graphite electrode (BPGE). Cyclic voltammetry at such a modified electrode, in contact with an aqueous solution have revealed one reversible oxidation and five reversible reduction steps for a LuIII bisphthalocyanine dissolved in the ionic liquid film, a proof that the highly reactive reduced species were protected from interaction with water in this highly lipophilic phase. It has also been shown that the redox properties are influenced by the ions in the aqueous phase, a property which has been attributed to ion‐pairing effects; obviously, the ion transfers at the organic|aqueous interface has been ignored. Electrochemistry of Lu(III)[(tBu)4Pc]2 (cyclic voltammetry and square wave voltammetry) under similar conditions shows that the nature and concentration of the anion in the aqueous solution in contact with the ionic liquid film influences the potential of the electrode reaction. This can be attributed to variations of the interfacial potential and also because the organic phase is an anion exchanger. Moreover, SWV experiments suggest that the rate of the overall reaction varies with the nature and concentration of the anion of the aqueous electrolyte, which implies that the ion transfer through the organic|aqueous interface is slower than the electron exchange rate of the molecule at the surface of graphite.  相似文献   

10.
The electro-insertion of ions is a well-known phenomenon, which allows the transfer of anions or cations across phase boundaries to be monitored and driven electro-chemically. Extremely hydrophilic anions, such as phosphate and arsenate, are not usually observed to undergo electro-insertion. It is shown here that at organic redox liquid|water|electrode triple interfaces these anions can be forced electro-chemically to transfer into organic media.The transfer process of phosphate anions from aqueous buffer solutions into organic microdroplets of the redox liquid N,N,N,N-tetraoctylphenylenediamine (TOPD) is pH and concentration sensitive. It is shown that phosphate is transferred in the form of PO4HK in the presence of phosphate buffer. Two distinct potential regions are identified and attributed to (i) interfacial redox processes at the liquid|liquid interface associated with deprotonation and (ii) bulk redox processes associated with anion transfer from the aqueous to the organic phase.The comparison of phosphate and arsenate electro-insertion processes suggests that arsenate is less hydrophilic and transferred into the organic phase preferentially.  相似文献   

11.
The deposition of an atomically precise nanocluster, for example, Ag44(SR)30, onto a large‐band‐gap semiconductor such as TiO2 allows a clear interface to be obtained to study charge transfer at the interface. Changing the light source from visible light to simulated sunlight led to a three orders of magnitude enhancement in the photocatalytic H2 generation, with the H2 production rate reaching 7.4 mmol h?1 gcatalyst?1. This is five times higher than that of TiO2 modified with Ag nanoparticles and even comparable to that of TiO2 modified with Pt nanoparticles under similar conditions. Energy band alignment and transient absorption spectroscopy reveal that the role of the metal clusters is different from that of both organometallic complexes and plasmonic nanoparticles: A type II heterojunction charge‐transfer route is achieved under UV/Vis irradiation, with the cluster serving as a small‐band‐gap semiconductor. This results in the clusters acting as co‐catalysts rather than merely photosensitizers.  相似文献   

12.
Anion transfer processes at a liquid|liquid interface were studied with an interdigitated gold band array electrode. The organic phase, 4‐(3‐phenylpropyl)‐pyridine containing Co(II)phthalocyanine, was immobilised as random droplets at the electrode surface and then immersed into aqueous electrolyte. Oxidation of Co(II)phthalocyanine at the generator electrode was shown to be associated with anion transfer from the aqueous into the organic phase. The corresponding back reduction at the collector electrode with anion expulsion was delayed by the anion/cation diffusion time across the interelectrode gap. A working curve based on a finite difference numerical simulation model was employed to estimate the apparent diffusion coefficients for anions in the organic phase (PF6?4?3?). Potential applications in ion analysis are discussed.  相似文献   

13.
The cadmium selenide quantum dots (QD) have been synthesized by template-control in an emulsion fiquid membrane system. The system consisted of kerosene as solvent, L152 (dialkylene succinimide) as surfactant,N7301 (trialiphatic amine, R3N, R=C8-C10) as carrier, 0.1mol/L CdCl2 solution as internal-aqueous phase and H2Se gas as external phase. Additive organic template agent in internal-aqueous phase was necessary to form CdSe QD. The influence of the nature of template and its concentration on sizes of the formed CdSe QD has also been studied. Transmission electron microscopy showed that the sizes of the products could be controlled down to 3-4nm. X-ray diffraction analysis revealed that the crystals had cubic structure. The formation process and the optical properties of CdSe QD have also been presented.  相似文献   

14.
Valuable emissive properties of organic fluorophores have become indispensable analytical tools in biophotonics, but frequently suffer from low solubilities and radiationless deactivation in aqueous media, that is, in biological ambience as well. In this report, nanoscaled dye–clay hybrids based on laponite, Na0.7{(Li0.3Mg5.5)[Si8O20(OH)4]}, are taken advantage of to solubilize neutral dyes, which are natively not encountered in water. Previously reported efficiency and solubility bottlenecks of such hybrids can to a large extent be overcome by comparably simple chemical measures, as demonstrated here for two prominent examples, the fluorescent dyes Nile Red and Coumarin 153. On controlled co‐adsorption of small bifunctional quaternary ammonium ions (Me3N+C2H5OH and Me3N+C2H5NH2) we observed an outright efficiency boost by an order of magnitude, and a 30‐fold brightness gain. Even at higher concentrations, transparency and stability of the hybrid dispersions are retained, rendering them useful for employment as optically functional nanoparticles in bioassays and beyond.  相似文献   

15.
A facile strategy was reported to synthesize and assemble a stable ultrathin film of Ni(OH)2 nanoparticles at gas/liquid interface where the aqueous phase contained Ni2+ and the organic phase was composed of triethylamine toluene solution. The ultrathin film of Ni(OH)2 nanoparticles that precipitated at the interface was transferred onto the electrode surface for the electrocatalysis of bio-thiols and selective electroanalysis of cysteine. The preparation of Ni(OH)2 ultrathin film and its transfer to an electrode substrate is very simple. The obtained Ni(OH)2 ultrathin film modified electrodes are stable, showing high electrochemical oxidation toward bio-thiols and good selectivity toward cysteine in phosphate buffered solution of pH 7.5.  相似文献   

16.
Silver nanoparticles preparation and the aggregation stability of the particles was investigated in lamellar liquid crystalline systems. A liquid crystal of HDTABr/pentanol/water was first prepared. The water content was next increased while keeping the mass ratio of HDTABr and pentanol constant. Silver nanoparticles were produced by replacing the aqueous phase by Ag sols of various concentrations (0.5–5×10–3 mol/l) or by an in situ preparation method, i.e., interlamellar reduction of Ag+ ions in the liquid crystalline phase. The stability of the silver nanoparticles was monitored by UV-VIS spectroscopy and TEM. The particle size ranged from 5 to 44 nm. The kinetic of silver nanoparticle aggregation was investigated. The effect of nanoparticles on structural ordering in liquid crystals was studied by XRD measurements and it was established that the lamellar distance (dL) was only slightly altered. Electronic Publication  相似文献   

17.
The formation of a frustrated Lewis pair consisting of sodium hydride (Na+H?) and a framework‐bound hydroxy proton O(H+) is reported upon H2 treatment of zeolite NaY loaded with Pt nanoparticles (Ptx/NaY). Frustrated Lewis pair formation was confirmed using in situ neutron diffraction and spectroscopic measurements. The activity of the intrazeolite NaH as a size‐selective catalyst was verified by the efficient esterification of acetaldehyde (a small aldehyde) to form the corresponding ester ethyl acetate, whereas esterification of the larger molecule benzaldehyde was unsuccessful. The frustrated Lewis pair (consisting of Na+H? and O(H+)) generated within zeolite NaY may be a useful catalyst for various catalytic reactions which require both H? and H+ ions, such as catalytic hydrogenation or dehydrogenation of organic compounds and activation of small molecules.  相似文献   

18.
The transfer of the ions Cl, Br, I, ClO4, SCN, NO3, BF4, and (C6H5)4B across the water|n-octanol (W|OC) liquid interface was studied and the standard Gibbs energies of ion transfer were determined. The ion transfer was achieved by oxidation of decamethylferrocene dissolved in a droplet of n-octanol that was attached to a graphite electrode immersed in the aqueous solutions of the respective alkali salts of the anions. The electrode reaction can be described by the equation: dmfc(OC)+X(W)⇄dmfc+(OC)+X(OC)+e, where X is the transferred anion. Square-wave voltammetry at this three-phase arrangement was utilised to determine the formal potential of the decamethylferrocene/decamethylferrocenium (dmfc/dmfc+) couple under the condition of ion transfer across the water|n-octanol interface. For calibration the standard Gibbs energies of ion transfer have been extrapolated to octanol from the series of known data for methanol, ethanol, n-propanol, and n-butanol. All these data are consistent and the experimental dependence of the formal potentials on the standard Gibbs energies is as predicted by theory. The validity of data is further supported by calculations of Gibbs energies of ion transfer using the Born theory. Until now it was not possible to perform electrochemical measurements at the water|n-octanol interface because in the conventional four-electrode cells this interface cannot be polarised. With the new method it is now for the first time possible to determine the Gibbs energies of transfer of ions across the water|n-octanol interface. These values are of very wide use for assessing the lipophilicity of compounds in chemistry, medicine, and pharmacology.  相似文献   

19.
Diamond-like carbon electrodes (DLCEs) have been synthesized by the pulsed laser deposition method. The surface structure of the DLCEs has been studied by atomic force microscopy and the root-mean-square roughness has been established as R ms≥81 ?. Electrochemical impedance spectroscopy and cyclic voltammetry data show that DLCEs are nearly ideally polarizable in the potential region –0.4<E<1.1 V (vs. Ag|AgCl|sat. KCl in H2O) in 0.1 M NaF+H2O solution. Various equivalent circuits have been used for fitting the complex plane and Bode plots. A very good agreement between experimental and calculated Nyquist curves has been established if the charge transfer and double layer charging at the surface, intercalation of the H+ and (or) Na+ ions and solid phase diffusion inside the nanoparticle, as well as the effect of an insulating film at the surface (i.e. surrounding the nanoparticles), are taken into account.  相似文献   

20.
A method to determine the standard Gibbs free energy for the transfer, ΔG°tr, of a highly hydrophilic metal ion from an aqueous solution, W, in the presence of high concentration of H+ to an organic solution, O, was proposed based on the theoretical consideration of the distribution process of ions between W and O. The usefulness of the proposed method was verified experimentally by comparing ΔG°tr of Mg2+ determined by the method with that obtained by voltammetry for the ion transfer at the W|O interface. The O examined were nitrobenzene (NB) and 1,2-dichloroethane (DCE). By applying the proposed method, ΔG°tr of NpO2+, UO22+, NpO22+ and PuO22+ from an acidic W to NB were determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号