首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An efficient strategy for the identification of potential nephroprotective substances in Zhu-Ling decoction has been established with the integration of absorbed components characterization, pharmacokinetics, and activity evaluation. A qualitative method was developed to characterize the chemical constituents absorbed components in vivo of Zhu-Ling decoction by using ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry. A quantitative method was established and validated for the simultaneous determination of eight compounds in rat plasma by using ultra-performance liquid chromatography-triple quadruple tandem mass spectrometry. Finally, the nephroprotective activities of absorbed components with high exposure were assessed by cell survival rate, superoxide dismutase, and malondialdehyde activities in hydrogen peroxide–induced Vero cells. As a result, 111 compounds in Zhu-Ling decoction and 36 absorbed components were identified in rat plasma and urine, and poricoic acid A, poricoic acid B, alisol A, 16-oxo-alisol A, and dehydro-tumulosic acid had high exposure levels in rat plasma. Finally, poricoic acid B, poricoic acid A, 16-oxo-alisol A, and dehydro-tumulosic acid showed remarkable nephroprotective activity against Vero cells damage induced by hydrogen peroxide. Besides, superoxide dismutase and malondialdehyde activities were obviously regulated in hydrogen peroxide–induced Vero cells by treatment with the four compounds mentioned above. Therefore, these four compounds were considered to be effective substances of Zhu-Ling decoction due to their relatively high exposure in vivo and biological activity. This study provided a chemical basis for the action mechanism of Zhu-Ling decoction in the treatment of chronic kidney diseases.  相似文献   

2.
A simple and efficient liquid chromatography–mass spectrometry method was developed and validated for the determination of geniposidic acid in rat plasma. After the addition of internal standard salidroside and acidification (0.1% formic acid, pH = 3.2), plasma samples were carried out by protein precipitation with acetonitrile and separated on a Kromasil C18 column (150 × 4.6 mm, 5 µm) within a run time of 9.0 min. Analysis was performed in selected ion monitoring mode with a positive electrospray ionization interface. No endogenous interference was observed at retention times of the analytes because of the high specificity of selected ion monitoring mode. The linear range was 0.02–4.0 µg/mL and the lower limit of quantification was 0.02 µg/mL. The mean extraction recoveries of geniposidic acid and internal standard from rat plasma were all >88.0% and the matrix effects were within acceptance criteria (90–110%). The validated method was successfully applied to the pharmacokinetic study of geniposidic acid in rat plasma after oral administration of G. jasminoides fruit crude extract and Zhi‐zi‐chi decoction, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
A sensitive and reliable LC‐ESI‐MS method for the determination of salvianolic acid C in rat plasma has been developed and validated. Plasma samples were prepared by liquid–liquid extraction with ethyl acetate and separated on a Zorbax SB‐C18 column (3.5 µm, 2.1 × 100 mm) at a flow rate of 0.3 mL/min using acetonitrile–water as mobile phase. The detection was carried out by a single quadrupole mass spectrometer with electrospray ionization source and selected ion monitoring mode. Linearity was obtained for salvianolic acid C ranging from 5 to 1000 ng/mL. The intra‐ and inter‐day precisions (RSD, %) didn't exceed 9.96%, and the accuracy (RE, %) were all within ±3.64%. The average recoveries of the analyte and internal standard were >89.13%. Salvianolic acid C was proved to be stable during all sample storage, preparation and analytic procedures. The validated method was successfully applied to pharmacokinetic study after oral and intravenous administration of salvianolic acid C to rats. The absolute oral bioavailability of salvianolic acid C was 0.29 ± 0.05%. This method was further applied to simultaneous determination of salvianolic acid A, salvianolic acid B and salvianolic acid C in rat plasma and showed good practicability. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Furanodiene, a sesquiterpene component extracted from the essential oil of the rhizome of Curcuma wenyujin Y.H. Chen et C. Ling (Wen Ezhu), is widely used in traditional Chinese medicine. A sensitive analytical method was established and validated for furanodiene in rat plasma, which was further applied to assess the pharmacokinetics of furanodiene in rats receiving a single dose of furanodiene. Liquid chromatography tandem mass spectrometry (LC/MS/MS) in multiple reaction monitoring mode was used in the method and costundide was used as internal standard. A simple protein precipitation based on methanol was employed. The simple sample cleanup increased the throughput of the method substantially. The method was validated over the range of 1–1000 ng/mL with a correlation coefficient >0.99. The lower limit of quantification was 1 ng/mL for furanodiene in plasma. Intra‐ and inter‐day accuracies for furanodiene were 88–115 and 102–107%, and the inter‐day precision less than 14.4%. After a single oral dose of 10 mg/kg of furanodiene, the mean peak plasma concentration of furanodiene was 66.9 ± 23.4 ng/mL at 1 h, the area under the plasma concentration–time curve (AUC0–10 h) was 220 ± 47.8 h ng/mL, and the elimination half‐life was 1.53 ± 0.06 h. After an intravenous adminstration of furanodiene at a dosage of 5 mg/kg, the area under the plasma concentration–time curve was 225 ± 76.1 h?ng/mL, and the elimination half‐life was 2.40 ± 1.18 h. Based on this result, the oral bioavailability of furanodiene in rats at 10 mg/kg is 49.0%. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
6.
A simple, reliable and rapid ultra‐performance liquid chromatography–tandem mass spectrometry method was developed and validated for the simultaneous quantification of four secoiridoid (gentiopicroside, swertiamarin, sweroside) and iridoid glycosides (loganic acid), the bio‐active ingredients in rat plasma. After liquid–liquid extraction, chromatographic separation was accomplished on a Shim‐pack XR‐ODS column with a mobile phase consisting of methanol and 0.1% formic acid in water. A triple quadrupole tandem mass spectrometry equipped with an electrospray ionization source was used as detector operating both in positive and negative ionization mode and operated by multiple‐reaction monitoring scanning. The lower limits of quantitation were 0.25–30 ng/mL for all the analytes. Both intra‐day and inter‐day precision and accuracy of analytes were well within acceptance criteria (±15%). The mean extraction recoveries of analytes and internal standard (amygdalin) from rat plasma were all >71.4%. The validated method was successfully applied to a comparative pharmacokinetic study of four analytes in rat plasma between normal and arthritic rats after oral administration of Huo Luo Xiao Ling Dan and Gentiana macrophylla extract, respectively. Results showed significant differences in pharmacokinetic properties of the analytes among the different groups. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Sarsasapogenin-AA13(AA13), a sarsasapogenin derivative, exhibited good neuroprotective and anti-inflammatory activities in vitro and therapeutic effects on learning and memory dysfunction in amyloid-β-injected mice. A sensitive UPLC–MS/MS method was developed and validated to quantitatively determine AA13 in rat plasma and was further applied to evaluate the pharmacokinetic behaviour of AA13 in rats that were administered AA13 intravenously and orally. This method was validated to exhibit excellent linearity in the concentration range of 1–1000 ng/mL. The lower limit of quantification was 1 ng/mL for AA13 in rat plasma. Intra-day accuracy for AA13 was in the range of 90–114%, and inter-day accuracy was in the range of 97–103 %. The relative standard deviation of intra-day and inter-day assay was less than 15%. After a single oral administration of AA13 at the dose of 25 mg/kg, Cmax of AA13 was 1266.4 ± 316.1 ng/mL. AUC0–48 h was 6928.5 ± 1990.1 h·ng/mL, and t1/2 was 10.2 ± 0.8 h. Under intravenous administration of AA13 at a dosage of 250 μg/kg, AUC0–48 h was 785.7 ± 103.3 h⋅ng/mL, and t1/2 was 20.8 ± 7.2 h. Based on the results, oral bioavailability (F %) of AA13 in rats at 25 mg/kg was 8.82 %.  相似文献   

8.
This study firstly describes the development of an accurate and sensitive high‐performance liquid chromatography–tandem mass spectrometry (LC‐MS/MS) assay for the quantification of Taiwanin E methyl ether (TEME) in rat plasma. The assay involved a simple liquid–liquid extraction step with ethyl acetate and a gradient elution using a mobile phase consisting of water containing 0.1% formic acid and acetonitrile containing 0.1% formic acid. Chromatographic separation was successfully achieved on an Agilent Zorbax‐C18 column (2.1 × 50 mm, 3.5 µm) with a flow rate of 0.40 mL/min. The multiple reaction monitoring was based on the transitions of m/z = 379.1 → 320.1 for TEME and 386.1 → 122.0 for buspirone (internal standard). The assay was validated to demonstrate the specificity, linearity, recovery, accuracy, precision and stability. The lower limit of quantification was 0.50 ng/mL in 50 μL of rat plasma. The developed and validated method was successfully applied to the quantification and pharmacokinetic study of TEME in rats after intravenous and oral administration of 1.45 mg/kg TEME. The oral absolute bioavailability of TEME was estimated to be 5.85 ± 1.41% with an elimination half‐life value of 2.61 ± 0.55 h, suggesting its poor absorption and/or strong metabolism in vivo. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
To quantify naringenin and hesperetin in rat plasma after oral administration of Da-Cheng-Qi decoction, a famous purgative traditional Chinese medicine, a high-performance liquid chromatography-tandem mass spectrometry method was developed and validated. The HPLC separation was carried out on a Zorbax SB-C(18) column using 0.1% formic acid-methanol as mobile phase and estazolam as internal standard after the sample of rat plasma had been cleaned up with one-step protein precipitation using methanol. Atmospheric pressure chemical ionization in the positive ion mode and selected reaction monitoring method was developed to determine the active components. This method was validated in terms of recovery, linearity, accuracy and precision (intra- and inter-batch variation). The recoveries of naringenin and hesperetin were 72.8-76.6 and 75.7-77.2%, respectively. Linearity in rat plasma was observed over the range of 0.5-250 ng/mL (r2 > 0.99) for both naringenin and hesperetin. The accuracy and precision were well within the acceptable range and the relative standard deviation of the measured rat plasma samples was less than 15% (n = 5). The validated method was successfully applied for the evaluation of the pharmacokinetics of naringenin and hesperetin administered to six rats.  相似文献   

10.
A sensitive rapid analytical method was established and validated to determine the bakkenolide A (BA) in rat plasma. This method was further applied to assess the pharmacokinetics of BA in rats receiving a single dose of BA. Liquid chromatography tandem mass spectrometry in multiple reaction monitoring mode was used in the method, and costundide was used as internal standard. A simple protein precipitation based on methanol was employed. The combination of a simple sample cleanup and short chromatographic running time (2.4 min) increased the throughput of the method substantially. The method was validated over the range of 1–1000 ng/mL with a correlation coefficient > 0.99. The lower limit of quantification was 1 ng/mL for BA in plasma. Intra‐ and inter‐day accuracies for BA were 93–112% and 103–104%, respectively, and the inter‐day precision was less than 15%. After a single oral dose of 20 mg/kg of BA, the mean peak plasma concentration (Cmax) of BA was 234.7 ± 161 ng/mL at 0.25 h. The area under the plasma concentration–time curve (AUC0–24 h) was 535.8 ± 223.7 h·ng/mL, and the elimination half‐life (T1/2) was 5.0 ± 0.36 h. In case of intravenous administration of BA at a dosage of 2 mg/kg, the area under the plasma concentration–time curve (AUC0–24 h) was 342 ± 98 h?ng/mL, and the elimination half‐life (T1/2) was 5.8 ± 0.7 h. Based on the results, the oral bioavailability of BA in rats at 20 mg/kg is 15.7%. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
β‐Asarone (BAS), a phenylpropanoid from Acorus calamus Linn., has shown biological effects in the management of cognitive impairment conditions such as Alzheimer's disease. The present paper describes a selective and sensitive liquid chromatography–tandem mass spectrometric method (HPLC‐MS/MS) using electrospray ionization source (ESI) for quantification of BAS in rat plasma. Briefly, the plasma samples were pre‐treated using a simple solid‐phase extraction method. The separation of BAS and the internal standard, caffeine, was achieved on an Agilent Zorbax XDB C18 column (50 × 2.1 mm i.d., 5 µm) using 0.2 mL/min isocratic mobile phase flow. The detection was performed using an Applied Biosystems Hybrid Q‐Trap API 2000 mass spectrometer equipped with an ESI source operated in positive mode. Also, the developed bioanalytical method was validated as per the US FDA bioanalytical guidelines over the concentration range of 9.79–4892.50 ng/mL (r2 ≥ 0.9951) for BAS from rat plasma. The mean percentage recovery (n = 3) for the low, middle and high quality control samples was 86.92 ± 3.89, 85.30 ± 1.09 and 87.24 ± 4.03%, respectively. The applicability of the validated HPLC‐MS/MS method was demonstrated by successful measurement of BAS from plasma following oral administration of Acorus calamus rhizome extracts to three female albino Wistar rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
A sensitive and simple high-performance liquid chromatographic (HPLC) method has been developed for determination of geniposide in rat plasma. The plasma was extracted with acetonitrile. Separation of the main effective constituent, geniposide, was accomplished on a reversed-phase ODS C18 column (250 mm × 4.6 mm i.d., 5 µm particles) with acetonitrile-water, 12:88 (v/v), as mobile phase and UV detection at 238 nm. Paeoniflorin was used as the internal standard (IS). The calibration plot was linear over the range 0.0848–7.42 µg mL?1. The lower limit of quantification was 0.0848 µg mL?1. Intra-day precision was better than 11.4% and inter-day precision was better than 9.3%. Mean extraction recovery was 87.1%. The validated method was successfully used in pharmacokinetic studies of geniposide in rat plasma after oral administration of Sendeng-4 decoction. The pharmacokinetic study indicated that absorption of geniposide from Sendeng-4 decoction was rapid, as also was its subsequent elimination.  相似文献   

13.
A sensitive high‐performance liquid chromatography–positive ion electrospray tandem mass spectrometry method was developed and validated for the quantification of ambrisentan in plasma. The analyte and the internal standard (armodafinil) were extracted from plasma by acetonitrile precipitation and they were separated on a reversed‐phase C18 column with a gradient program. The MS acquisition was performed with multiple reaction monitoring mode using the respective [M + H]+ ions, m/z 379–347 for ambrisentan and m/z 274–167 for the IS. The assay exhibited a linear dynamic range of 1–2000 ng/mL for ambrisentan in plasma. Acceptable precision (<10%) and accuracy (100 ± 8%) were obtained for concentrations over the standard curve range. The method was successfully applied to quantify ambrisentan concentrations in a rodent pharmacokinetic study after a single oral administration of ambrisentan at 2.5 mg/kg to rats. Following oral administration the maximum mean concentration in plasma (Cmax; 1197 ± 179 ng/mL) was achieved at 1.0 ± 0.9 h (Tmax), and the area under the curve (AUC) was 6013 ± 997 ng h/mL. Therefore, development of such a simple and sensitive method in rat plasma should translate into a method for ambrisentan in human plasma for clinical trials. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
A sensitive liquid chromatography–electrospray ionization–mass spectrometry method has been developed and validated for determination of two major bioactive saponins in rat plasma after oral administration of saponins extracted from Rhizoma Panacis Japonici, including chikusetsusaponin V and chikusetsusaponin IV for the first time. Akebia saponin D was used as the internal standard (IS). Plasma samples were prepared by protein precipitation with methanol. A Phenomenex C18 column (150 × 4.6 mm, 4 µm) was used as the analytical column with a mobile phase of acetonitrile and 0.05% aqueous formic acid. Mass spectrometric detection was achieved by single quadrupole mass spectrometer equipped with an electrospray ionization interface operating in negative ionization mode. Calibration curves showed good linearity over the concentration range of 5–500 ng/mL for the two analytes in rat plasma. The lower limit of quantification was 5 ng/mL. The intra‐ and inter‐batch precisions were within 10.3% and accuracy ranged from ?3.9 to 5.4%. The method was validated and successfully applied to the preliminary pharmacokinetic study of chikusetsusaponin V and chikusetsusaponin IV in rat plasma after oral administration of saponins extracted from Rhizoma Panacis Japonici. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
A sensitive and rapid liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated for determination of bakkenolide D (BD), which was further applied to assess the pharmacokinetics of BD. In the LC‐MS/MS method, the multiple reaction monitoring mode was used and columbianadin was chosen as internal standard. The method was validated over the range of 1–800 ng/mL with a determination coefficient >0.999. The lower limit of quantification was 1 ng/mL in plasma. The intra‐ and inter‐day accuracies for BD were 91–113 and 100–104%, respectively, and the inter‐day precision was <15%. After a single oral dose of 10 mg/kg of BD, the mean peak plasma concentration of BD was 10.1 ± 9.8 ng/mL at 2 h. The area under the plasma concentration–time curve (AUC0–24 h) was 72.1 ± 8.59 h ng/mL, and the elimination half‐life (T1/2) was 11.8 ± 1.9 h. In case of intravenous administration of BD at a dosage of 1 mg/kg, the AUC0–24 h was 281 ± 98.4 h?ng/mL, and the T1/2 was 8.79 ± 0.63 h. Based on these results, the oral bioavailability of BD in rats at 10 mg/kg is 2.57%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
A sarsasapogenin derivative, sarsasapogenin‐AA22 (AA22), with cyclobutylamine at the 3‐hydroxyl position of sarsasapogenin, has great neuroprotective activity in PC12 cells and NO production inhibitory activity in RAW264.7 cell lines. A method was developed to determine AA22 in rat plasma which was further applied to evaluate the pharmacokinetics of AA22 after taking a single dose of AA22. Liquid chromatography tandem mass spectrometry was used in the method, while diosgenin was used as internal standard. A simple protein precipitation based on acetonitrile was utilized. A simple sample cleanup promoted the throughput of the method considerably. The method was validated over the range of 1–1000 ng/mL with a correlation coefficient > 0.99. The lower limit of quantification was 1 ng/mL for AA22 in plasma. Intra‐ and inter‐day accuracies for AA22 were 92–111 and 100–103%, respectively, and the inter‐day precision was <15%. After a single oral dose of 25 mg/kg of AA22, the mean peak plasma concentration of AA22 was 2114 ± 362 ng/mL at 6 h. The area under the plasma concentration–time curve was 196,098 ± 69,375 h ng/mL, and the elimination half‐life was 8.7 ± 2.2 h.  相似文献   

17.
Astragaloside III (AST III), a naturally occurring saponin compound isolated from Radix Astragali, has been demonstrated to have anti‐gastric ulcer, immunomodulatory and antitumor effects. To evaluate its pharmacokinetics in rats, a rapid, sensitive and specific high‐performance liquid chromatography–tandem mass spectrometric (HPLC‐MS/MS) method has been developed and validated for the quantification of astragaloside III in rat plasma. Samples were pretreated using a simple protein precipitation with methanol–acetonitrile (50:50, v/v) and the chromatographic separation was performed on a C18 column by a gradient elution using a mobile phase consisting of water containing 0.1% formic acid and acetonitrile containing 0.1% formic acid. Astragaloside III and the internal standard (buspirone) were detected using a tandem mass spectrometer in positive multiple reaction monitoring mode. Method validation revealed excellent linearity over the range of 5.00–5000 ng/mL together with satisfactory intra‐ and inter‐day precision, accuracy and recovery. Stability testing showed that astragaloside III spiked into rat plasma was stable for 24 h at 20°C temperature, for up to 30 days at ?80°C, and during three freeze–thaw cycles. The method was successfully used to investigate the pharmacokinetic profile of AST III after oral (10 mg/kg) and intravenous (1.0 mg/kg) administration in rats. The oral absolute bioavailability of AST III was calculated to be 4.15 ± 0.67% with an elimination half‐life value of 2.13 ± 0.11 h, suggesting its poor absorption and/or strong metabolism in vivo. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Du  Kehe  Wu  Caisheng  Ding  Chunguang  Zhao  Shanlin  Qin  Hailin  Zhang  Jinlan 《Chromatographia》2009,69(11):1259-1266

A rapid and specific high-performance liquid chromatographic method coupled with electrospray ionization mass spectrometric detection has been developed and validated for identification and quantification of wogonin and oroxylin A in rat plasma. Wogonin, oroxylin A, and diazepam (internal standard) were extracted from plasma samples by liquid–liquid extraction with ethyl acetate. Chromatographic separation was achieved on a C18 column with acetonitrile–0.6% aqueous formic acid 35:65 (v/v) as mobile phase at a flow rate of 0.2 mL min−1. Detection was performed with a single-quadrupole mass spectrometer in selected-ion-monitoring (SIM) mode. Linearity was good within the concentration range 14.4–360 ng mL−1 for wogonin and 10.8–271 ng mL−1 for oroxylin A; the correlation coefficients (r 2) were 0.9999. The intra-day and inter-day precision, as RSD, was below 12.4%, and accuracy ranged from 81.1 to 111.9%. The lower limit of quantification was 14.4 ng mL−1 for wogonin and 10.8 ng mL−1 for oroxylin A. This method was successfully used in the first pharmacokinetic study of wogonin and oroxylin A in rat plasma after oral administration of the active fraction from Xiao-xu-ming decoction.

  相似文献   

19.
A sensitive high‐performance liquid chromatography–positive ion electrospray tandem mass spectrometry method was developed and validated for the quantification of urapidil in plasma. Following liquid–liquid extraction, the analyte was separated using an isocratic mobile phase on a reverse‐phase column and analyzed by MS/MS in the multiple reaction monitoring mode using the respective [M + H]+ ions, m/z 388 to 205 for urapidil and m/z 452 to 344 for the internal standard. The assay exhibited a linear dynamic range of 0.1–500 ng/mL for urapidil in plasma. Acceptable precision (<7%) and accuracy (100 ± 8%) were obtained for concentrations over the standard curve range. The method was successfully applied to quantify urapidil concentrations in a preclinical pharmacokinetic study after a single oral administration of urapidil at 3 mg/kg to rats. Following oral administration the maximum mean concentration in plasma (Cmax; 616 ± 73 ng/mL) was achieved at 0.5 h (Tmax) and area under curve (AUC0–24) was 1841 ± 308 ng h/mL. The half‐life (t1/2) and clearance (Cl) were 2.47 ± 0.4 h and 1660 ± 276 mL/h/kg, respectively. Moreover, it is plausible that the assay method in rat plasma would facilitate the adaptability of urapidil quantification in human plasma for clinical trials. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
A sensitive and specific liquid chromatography–electrospray ionization–tandem mass spectrometric (LC‐ESI‐MS/MS) method was developed and validated to simultaneously quantify 11 active compounds (coptisine, jatrorrhizine, berberine, palmatine, baicalin, baicalein, wogonoside, wogonin, rhein, emodin and aloeemodin) from Xiexin decoction (XXD) in rat plasma. Plasma samples extracted by a single‐step protein precipitation procedure were separated using the gradient mode on a Dikma ODS‐C18 column. Selected reaction monitoring scanning was employed for quantification with switching electrospray ion source polarity between positive and negative modes in a single run. Calibration curves offered satisfactory linearity (r > 0.995) at linear range of 0.47–60 ng/mL for coptisine, jatrorrhizine, berberine and palmatine, 15–1930 ng/mL for baicalin, 20–2560 ng/mL for baicalein, 14–1790 ng/mL for wogonoside, 0.57–72.8 ng/mL for wogonin, 10–1280 ng/mL for rhein, 0.6–76.8 ng/mL for emodin and 3.0–384 ng/mL for aloeemodin. The intra‐ and interday precisions were less than 10.2% in terms of relative standard deviation (RSD), and the accuracies were within ±10.84% in terms of relative error (RE). It was successfully applied to the evaluation of pharmacokinetics after single oral doses of XXD were administered to rats. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号