首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Here, we studied the influence of the methoxyl groups attached at C‐7 and C‐2′ of natural and synthetic 1‐arylindanes on the chemical shift of the signal of bibenzylic hydrogen and carbon atoms and J1,2 coupling constants. This influence was also analysed in natural 1‐aryltetralins and related compounds that possess methoxyl and/or hydroxyl groups bound at C‐8 and C‐2′. The methoxyl groups attached at C‐7 in indanes or at C‐8 in tetralins produce a deshielding signal at H‐1 and shield at C‐1 and a strong decrease in the value of J1,2 due to the pseudoequatorial location adopted by the aryl group bound at C‐1, avoiding an ‘A1,3 strain’. Furthermore, compounds with hydroxyl or methoxyl groups in C‐2′, in the absence of substituents of C‐7 or C‐8, present a strong deshielding signal at H‐1, strong shield of the C‐1 signal and a decrease in the value of J1,2. This is attributed to the stereoelectronic effects of the methoxyl or hydroxyl groups, which we have called ‘Asarone effect’. NOESY experiments were conducted to confirm the configuration and conformation of some of the compounds included in this work. This study shows that both effects, A1,3 strain and Asarone effect, must be taken into account when the structure of natural indanes and tetralins is analysed by using 1H‐NMR and 13C‐NMR spectra. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Covalent organic frameworks (COFs) RIO-13, RIO-12, RIO-11, and RIO-11m were investigated towards their CO2 capture properties by thermogravimetric analysis at 1 atm and 40 °C. These microporous COFs bear in common the azine backbone composed of hydroxy-benzene moieties but differ in the relative number of hydroxyl groups present in each material. Thus, their sorption capacities were studied as a function of their textural and chemical properties. Their maximum CO2 uptake values showed a strong correlation with an increasing specific surface area, but that property alone could not fully explain the CO2 uptake data. Hence, the specific CO2 uptake, combined with DFT calculations, indicated that the relative number of hydroxyl groups in the COF backbone acts as an adsorption threshold, as the hydroxyl groups were indeed identified as relevant adsorption sites in all the studied COFs. Additionally, the best performing COF was thoroughly investigated, experimentally and theoretically, for its CO2 capture properties in a variety of CO2 concentrations and temperatures, and showed excellent isothermal recyclability up to 3 cycles.  相似文献   

3.
Recently, during studies directed toward the total synthesis of the antibiotic frustulosin 11,2 we encountered some problems in the removal of methoxyl groups during the preparation of the phenolic aldehyde 2. Our efforts to effect this transformation led us to investigate the reactions of the boron trihalides with aromatic aldehydes. Although the methoxyl group has many desirable properties for hydroxyl protection its stability to both acids and bases often presents difficulties at the time of removal. Of the many reagents and methods devised3 for the removal of methoxyl and other alkoxyl groups boron tribromide can be considered as one of the most widely applicable reagents for this purpose. However, as a fairly powerful Lewis acid, complications can arise when acid.  相似文献   

4.
A chelation-assisted palladium-catalyzed acyloxylation of the sp3 C-H bond of benzyl by carboxylic acid is described, which employs PhI(OAc)2 as a stoichiometric oxidant. The procedure tolerates a series of functional groups, such as methoxyl, chloro, bromo, iodo, vinyl, formyl, phenolic hydroxyl, nitro, and cyano groups, providing the acyloxylation products in moderate to good yields.  相似文献   

5.
Ionic liquids (ILs), by virtue of their special properties such as functional designability and high thermal stability, have been widely used as absorbent to CO2 and catalyst for CO2 conversion. This review summarizes the recent developments from 2019 to 2021 on task-specific ionic liquids (TSILs) with modulable properties by introducing specific functional groups to anions or/and cations for CO2 absorption and conversion. The increase of basicity in TSILs by introducing amino/or amine groups or collaboration with multiple active sites of carboxyl, imidazolyl, pyridyl, and hydroxyl groups achieve high CO2 affinity and absorption capacity. To solve the defects of high viscosity, ether groups are introduced to TSILs for CO2 absorption. Besides, recent studies on CO2 thermal catalytic conversion focused on the construction of C–O bonds and C–N bonds are also summarized. The catalytic activity of TSILs is enhanced by improving the synergy effect of different functional groups on anions and cations. It is expected that this minireview will provide the understanding of the current developments and perspective for practical CO2 absorption and transformation by TSILs.  相似文献   

6.
Abstract

The distribution of the alkoxide groups obtained in the metallation of starch in dimethyl sulfoxide solution by alkali metal naphthalenes was studied. The starch alkoxide was reacted with methyl iodide, and the methylated starch was hydrolyzed and analyzed for glucose and O-methyl glucose derivatives. The metallation reaction was found to be random, as seen from the fact that at low alkoxide concentration (D.S = 0.6), 2,3,6-tri-O-methyl glucose was formed, while at relatively high alkoxide concentration (D.S. = 1.5) unreacted glucose was still present. At low alkoxide concentration (D.S. ? 0.6) there was, to a certain extent, preferential metallation at the C2 hydroxyl groups, and to a lesser extent at the C6 hydroxyl groups, as seen from the relative molar ratios of about 10:4:1 of the 2-, 6-, and 3-O-methyl glucose derivatives obtained, respectively. An increase in the metallation at the C3 hydroxyl occurred with increasing alkoxide concentration. The distribution of the methoxyl groups with the three alkali metals potassium, sodium, and lithium was similar; there were differences only in the ease of metallation of the starch by the various alkali metal naphthalenes and in the efficiency of the coupling reaction with methyl iodide.  相似文献   

7.
Ultra-low molecular weight (ULMW) CO2-polyols with well-defined hydroxyl end groups represent useful soft segments for the preparation of high-performance polyurethane foams. However, owing to the poor proton tolerance of catalysts towards CO2/epoxide telomerization, it remains challenging to synthesize ULMW yet colorless CO2-polyols. Herein, we propose an immobilization strategy of constructing supported catalysts by chemical anchoring of aluminum porphyrin on Merrifield resin. The resulting supported catalyst displays both extremely high proton tolerance (≈8000 times the equivalents of metal centers) and independence of cocatalyst, affording CO2-polyols with ULMW (580 g mol−1) and high polymer selectivity (>99 %). Moreover, the ULMW CO2-polyols with various architectures (tri-, quadra-, and hexa-arm) can be obtained, suggesting the wide proton universality of supported catalysts. Notably, benefiting from the heterogeneous nature of the supported catalyst, colorless products can be facilely achieved by simple filtration. The present strategy provides a platform for the synthesis of colorless ULMW polyols derived from not only CO2/epoxides, but also lactone, anhydrides etc. or their combinations.  相似文献   

8.
Two new chemically stable metalloporphyrin-bridged metal-catechol frameworks, InTCP-Co and FeTCP-Co, were constructed to achieve artificial photosynthesis without additional sacrificial agents and photosensitizers. The CO2 photoreduction rate over FeTCP-Co considerably exceeds that obtained over InTCP-Co, and the incorporation of uncoordinated hydroxyl groups, associated with catechol, into the network further promotes the photocatalytic activity. The iron-oxo coordination chain assists energy band alignment and provides a redox-active site, and the uncoordinated hydroxyl group contributes to the visible-light absorptance, charge-carrier transfer, and CO2-scaffold affinity. With a formic acid selectivity of 97.8 %, FeTCP-OH-Co affords CO2 photoconversion with a reaction rate 4.3 and 15.7 times higher than those of FeTCP- Co and InTCP-Co, respectively. These findings are also consistent with the spectroscopic study and DFT calculation.  相似文献   

9.
Organosolv lignin has been selected to investigate the thermal behavior of lignin over zeolites by using a thermogravimetric analyzer coupled with a Fourier-transform infrared spectrometer (TG-FTIR). The chemical structure of this lignin has been determined by 1H NMR to obtain the distribution of main functional groups such as methoxyl groups and free aliphatic and phenolic hydroxyl groups. All three zeolite catalysts tested, HZSM-5, H-β, and USY, exerted significant influences on the dehydration reaction in the initial stage, the deoxygenation reaction of oxygenated compounds such as methanol and phenols, and the char-forming process during lignin pyrolysis in the range 30–800 °C. The dehydration reaction was enhanced in the order USY > HZSM-5 > H-β, while char formation was suppressed in the reverse order. The presence of HZSM-5 and H-β catalyzed the conversion of both oxygenated compounds and chars into the low-molecular-weight gases CO, CO2, and methane. The addition of USY clearly aided decomposition of the oxygenated compounds, but had little effect on the char degradation.  相似文献   

10.
Quantitative FTIR studies of alumina hydroxyl groups have been used to measure the surface coverage of V/Al2O3 catalysts. The IR spectra show a preferential consumption of the most basic hydroxyls (3769 cm?1) with the initial V uptake. The integrated area of the hydroxyl region was used to calculate the surface coverage of the catalysts. The surface coverage increased to 0.63 as the V loading increased to 6.7 wt%. The surface coverage results obtained from IR were compared to those measured by ion scattering spectroscopy (ISS) and CO2 chemisorption. The surface coverages measured by ISS were comparable to those obtained by IR. In contrast, CO2 chemisorption appears to overestimate the surface coverage of the catalysts. The overestimation of the surface coverage by the CO2 chemisorption method is attributed to the preferential adsorption of the V phase onto the most basic hydroxyls, the same sites which interact with CO2.  相似文献   

11.
Quantitative FTIR studies of alumina hydroxyl groups have been used to measure the surface coverage of V/Al2O3 catalysts. The IR spectra show a preferential consumption of the most basic hydroxyls (3769 cm–1) with the initial V uptake. The integrated area of the hydroxyl region was used to calculate the surface coverage of the catalysts. The surface coverage increased to 0.63 as the V loading increased to 6.7 wt%. The surface coverage results obtained from IR were compared to those measured by ion scattering spectroscopy (ISS) and CO2 chemisorption. The surface coverages measured by ISS were comparable to those obtained by IR. In contrast, CO2 chemisorption appears to overestimate the surface coverage of the catalysts. The overestimation of the surface coverage by the CO2 chemisorption method is attributed to the preferential adsorption of the V phase onto the most basic hydroxyls, the same sites which interact with CO2.Dedicated to Professor Dr. Dieter Klockow on the occasion of his 60th birthday  相似文献   

12.
The development of novel materials for carbon dioxide (CO2) capture is of great importance in resource utilization and environmental preservation. In this study, imidazolium‐based ionic liquids (ILs) with symmetrical ester and hydroxyl groups were prepared, and their corresponding polymer were synthesized by melt condensation polymerization. The structure and properties of the poly(ionic liquid)s (PILs) were characterized by proton nuclear magnetic resonance, gel permeation chromatograph, differential scanning calorimetry, X‐ray diffraction, and scanning electron microscopy. In addition, the CO2 sorption behavior of the IL monomers and PILs were studied at a low pressure (648.4 mmHg CO2) and under a temperature of 25°C using a thermogravimetric analyzer. The CO2 sorption capacity of 1,3‐bis(2‐hydroxyl ethyl)‐imidazolium hexafluorophosphate ([HHIm]PF6, 10 mol%) was the highest among all the IL monomers and PILs studied. This capacity is also much higher than those reflected of previously reported ILs. Moreover, the sorption equilibrium of [HHIm]PF6 was achieved within a short time. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Dendrimers bearing hydroxyl groups supported by layered double hydroxides (CO3–LDH) with Mg/Al ratio ranging from 1:1 to 5:1 showed improved properties for the reversible capture of carbon dioxide (CO2). The adsorption capacity of the starting LDH was due to the intrinsic base-like behavior, and was found to depend on the Mg/Al ratio. When contacted with polyol dendrimers in aqueous media, no intercalation took place. This was explained in terms of low exfoliation grade of LDH and hydrophobic character of the dendrimer molecules. The latter rather adsorb on the external surface of the LDH stacks for low dendrimer loadings, or aggregate into organic clusters for higher contents. Analyses through thermal programmed desorption of CO2 revealed that dendrimer incorporation advantageously attenuates the basicity strength of the starting LDH support, by lowering the desorption temperature. The OH groups of the organic moiety were found to display an amphoteric character, and act as the main adsorption sites. The weak interactions with CO2 facilitate easier release of the major part of adsorbed CO2 at temperature not exceeding 80–100 °C. On polyol organo-LDHs, the reversible CO2 retention was discussed herein in terms of acid–base interactions. This concept allows envisaging the capture of diverse pollutants and other greenhouse gases by modifying the chemical groups on the dendritic moiety.  相似文献   

14.
Polymerizations of N-carboxy anhydrides of L-phenylalanine, γ-benzyl-L-glutamate, O-carbobenzoxy-L-tyrosine, L-leucine, and sarcosine, as initiated by primary, secondary, and tertiary amines in N2 or CO2 atmospheres and in the presence or absence of NaH, indicate that they proceed via carbamate salt intermediates. This conclusion is supported by radiotracer studies as well as by NMR studies of the initial products of NCA-amine reaction mixtures.

The “activated monomer” mechanism of strong-base initiated polymerizations is discounted on the bases that polypeptides are not formed in aprotic tertiary amine-initiated systems (hydantoins and diketopiperazines are obtained instead) and that methoxyl end groups are detected in polypeptides initiated with 14C-labeled NaOCH3.  相似文献   

15.
《印度化学会志》2023,100(1):100859
The current socio-economic issues with concerns on environmental quality and global warming are attributed to high concentrations of atmospheric carbon dioxide due to extensive usage of fossil fuels. Thus, over the last two decades, comprehensive work has been reported on carbon capture and storage and catalytic conversion of carbon dioxide to hydrocarbons. Among these, the reactions with hydrocarbons to form value-added products have been in focus. In this work, an attempt was made to identify the feasibility of the reaction: carbon dioxide and steam to form hydrocarbons of fuel value. After reviewing the literature on the development of various catalysts and their mechanism, a multi-metallic catalyst supported by TiO2 Nano-needles was explored. The reaction mechanism is expected to proceed with activated CO2 complex and hydroxyl groups over the metal oxide catalyst. Current reported work on CO2 and Hydrogen proceeds with activated CO2 and protons over the catalyst. The characterization techniques mainly XPS, XRD, TGA, FESEM-EDAX, FTIR, and NMR were used to analyze the catalyst activity and to confirm the products formed. The reaction is found to yield methanol and oxygen only. However, the conversion is found to be 0.4% - 3.8% in the temperature range 350°C to 550°C. The reaction of CO2 with hydroxyl groups from water vapor can be effective as an alternative to the reaction with protons from hydrogen.  相似文献   

16.
Hydrogen-bonded clusters and solvate structures formed by o-hydroxybenzoic acid (o-HBA) and water in supercritical CO2 were studied (T = 318 K, 348 K, ρ = 0.7 g/cm3). The atom-atom radial distribution functions, coordination numbers, average numbers of hydrogen bonds for individual atomic groups, and power spectrum were calculated by the Car-Parrinello molecular dynamics. Despite the high polarity of the cosolvent, the hydroxyl group of o-HBA predominantly forms intramolecular hydrogen bond, while hydrogen bonds with water involve only the atoms of carboxyl groups. The temperature effect on the stability of these bonds showed itself in different ways. The intermolecular interactions of o-HBA with carbon dioxide were found to be weaker than those with water. It was established that the Lewis acid-Lewis base interactions between CO2 and the hydroxyl group of the solute increase with increasing temperature. Instantaneous configurations illustrating the temperature effects on the molecular structures were obtained.  相似文献   

17.
Two new azo-bridged hydroxyl-rich porous organic polymers (POPs), named PPDA-P5 and TB-P5, were designed and successfully fabricated via azo-coupling reaction with per-hydroxylated pillar[5]arene macrocycle as the core and p-phenylenediamine and Troger's base (TB) diamine as the linker, respectively. Owing to the abundant nitrogen and hydroxyl groups, both polymers exhibited excellent interaction affinity toward carbon dioxide (CO2) and then were applied as efficient heterogeneous catalysts for the transformation of CO2 to cyclic carbonates with high yield, even under mild conditions. Interestingly, TB-P5 exhibited superior catalytic performance toward PPDA-P5, indicating TB's positive role as an organic base. This design strategy and results provided new insight into the development of macrocycle-based POPs in the field of heterogeneous catalysis.  相似文献   

18.
《Fluid Phase Equilibria》2002,193(1-2):203-216
Fourier transform infrared (FT-IR) spectroscopy has been used to measure the molarities of hydrogen bonding species between carboxylic acids (acetic acid and palmitic acid) and water in supercritical CO2. The equilibrium constants of dimerization for the carboxylic acids were determined in supercritical CO2 with octane. Further, the interactions of propanol-d (1- and 2-propanol-d) or xylenol (2,5-, 2,6- and 3,4-xylenol) isomers with acetone in supercritical CO2 were studied. Experiments were carried out at 308.2–313.2 K and 7.0–20.0 MPa. The molarities of hydrogen bonding species between the carboxylic acids and water in supercritical CO2 increase with the increasing molarity of water. The carboxylic acids interact more easily with ethanol than water in supercritical CO2. For supercritical CO2+carboxylic acid+octane systems, the equilibrium constants between the carboxylic acid monomer and dimer increase with the increasing molarity of octane. The equilibrium constants of the carboxylic acids seem to approach to those in liquid paraffin according to addition of octane in supercritical CO2. The amount of the interaction species between 1-propanol-d and acetone is larger than that between 2-propanol-d and acetone. The amount of acetone interacting with OH group for 3,4-xylenol is the largest among those for xylenol isomers. These differences among the isomers may be caused by the screen effects of methyl groups around hydroxyl group for the isomers.  相似文献   

19.
Gas transport properties of novel hyperbranched polyimide/hydroxy polyimide blends and their silica hybrid membranes were investigated. Gas permeability coefficients of the blend membranes showed positive deviation from a semilogarithmic additive rule. The enhanced gas permeability were resulted from the increase in free volume elements caused by the intermolecular interaction between terminal amine groups of the hyperbranched polyimide and hydroxyl groups of the hydroxy polyimide backbone. Additionally, CO2/CH4 separation ability of the blend membranes was markedly promoted by hybridization with silica. The remarkable CO2/CH4 separation behavior was considered to be due to characteristic distribution and interconnectivity of free volume elements created by the incorporation of silica. For the hyperbranched polyimide/hydroxy polyimide blend system, polymer blending and hybridization techniques synergistically provided the excellent CO2/CH4 separation ability.  相似文献   

20.
Electrochemical CO2 reduction reaction (CO2RR) over Cu catalysts exhibits enormous potential for efficiently converting CO2 to ethylene (C2H4). However, achieving high C2H4 selectivity remains a considerable challenge due to the propensity of Cu catalysts to undergo structural reconstruction during CO2RR. Herein, we report an in situ molecule modification strategy that involves tannic acid (TA) molecules adaptive regulating the reconstruction of a Cu-based material to a pathway that facilitates CO2 reduction to C2H4 products. An excellent Faraday efficiency (FE) of 63.6 % on C2H4 with a current density of 497.2 mA cm−2 in flow cell was achieved, about 6.5 times higher than the pristine Cu catalyst which mainly produce CH4. The in situ X-ray absorption spectroscopy and Raman studies reveal that the hydroxyl group in TA stabilizes Cuδ+ during the CO2RR. Furthermore, theoretical calculations demonstrate that the Cuδ+/Cu0 interfaces lower the activation energy barrier for *CO dimerization, and hydroxyl species stabilize the *COH intermediate via hydrogen bonding, thereby promoting C2H4 production. Such molecule engineering modulated electronic structure provides a promising strategy to achieve highly selective CO2 reduction to value-added chemicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号