首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The abrupt high spin (HS)→low spin (LS) transition (T1/2=136 K) in [Fe(hbtz)2(CH3CN)2](BF4)2 (hbtz=1,6-di(tetrazol-2-yl)hexane) is finished at 100 K and further thermal treatment influences the spin crossover. Subsequent heating involves a change of the spin state in the same way (T1/2=136 K) on cooling. In contrast, cooling below 100 K triggers different behavior and T1/2 is shifted to 170 K. The extraordinary structural changes that occurred below 100 K are responsible for the observed diversity of properties. A unique feature of the low-temperature phase is the rebuilding of the anion network expressed by a shift of anions inside the polymeric layer at a distance of 1.2 Å as well as the relative shift of neighboring layers at over 4 Å. These structural alterations, connected with a phase transition, become the origin of the strain, which in most cases causes crystal cleaving. In a sample composed from crystals crushed as a result of the phase transition or as a result of mechanical crumbling, the hysteresis loop vanishes; however, annealing the sample allows to its partial restoration. A replacement of acetonitrile by other nitriles leads to preservation of the polymeric structure and spin crossover, but no phase transition follows.  相似文献   

2.
Two new heterobimetallic porous coordination polymers with the formula [Fe(TPT)2/3{MI(CN)2}2] ? nSolv (TPT=[(2,4,6‐tris(4‐pyridyl)‐1,3,5‐triazine]; MI=Ag (nSolv=0, 1 MeOH, 2 CH2Cl2), Au (nSolv=0, 2 CH2Cl2)) have been synthesized and their crystal structures were determined at 120 K and 293 K by single‐crystal X‐ray analysis. These structures crystallized in the trigonal R‐3m space group. The FeII ion resides at an inversion centre that defines a [FeN6] coordination core. Four dicyanometallate groups coordinate at the equatorial positions, whilst the axial positions are occupied by the TPT ligand. Each TPT ligand is centred in a ternary axis and bridges three crystallographically equivalent FeII ions, whilst each dicyanometallate group bridges two crystallographically equivalent FeII ions that define a 3D network with the topology of NbO. There are two such networks, which interpenetrate each other, thereby giving rise to large spaces in which very labile solvent molecules are included (CH2Cl2 or MeOH). Crystallographic analysis confirmed the reversible structural changes that were associated with the occurrence of spin‐crossover behaviour at the FeII ions, the most significant structural variation being the change in unit‐cell volume (about 59 Å3 per FeII ion). The spin‐crossover behaviour has been monitored by means of thermal dependence of the magnetic properties, Mössbauer spectroscopy, and calorimetry.  相似文献   

3.
Solvated iron(II)‐tris(bipyridine) ([FeII(bpy)3]2+) has been extensively studied with regard to the spin crossover (SCO) phenomenon. Herein, the ultrafast spin transition dynamics of single crystal [FeII(bpy)3](PF6)2 was characterized for the first time using femtosecond transient absorption (TA) spectroscopy. The single crystal environment is of interest for experiments that probe the nuclear motions involved in the SCO transition, such as femtosecond X‐ray and electron diffraction. We found that the TA at early times is very similar to what has been reported in solvated [FeII(bpy)3]2+, whereas the later dynamics are perturbed in the crystal environment. The lifetime of the high‐spin state is found to be much shorter (100 ps) than in solution due to chemical pressure exerted by the lattice. Oscillatory behavior was observed on both time scales. Our results show that single crystal [FeII(bpy)3](PF6)2 serves as an excellent model system for localized molecular spin transitions.  相似文献   

4.
Formation of either a dimetallic compound or a 1 D coordination polymer of adiponitrile adducts of [Fe(bpte)]2+ (bpte=[1,2‐bis(pyridin‐2‐ylmethyl)thio]ethane) can be controlled by the choice of counteranion. The iron(II) atoms of the bis(adiponitrile)‐bridged dimeric complex [Fe2(bpte)22‐(NC(CH2)4CN)2](SbF6)4 ( 2 ) are low spin at room temperature, as are those in the polymeric adiponitrile‐linked acetone solvate polymer {[Fe(bpte)(μ2‐NC(CH2)4CN)](BPh4)2 ? Me2CO} ( 3? Me2CO). On heating 3? Me2CO to 80 °C, the acetone is abruptly removed with an accompanying purple to dull lavender colour change corresponding to a conversion to a high‐spin compound. Cooling reveals that the desolvate 3 shows hysteretic and abrupt spin crossover (SCO) S=0?S=2 behaviour centred at 205 K. Non‐porous 3 can reversibly absorb one equivalent of acetone per iron centre to regenerate the same crystalline phase of 3? Me2CO concurrently reinstating a low‐spin state.  相似文献   

5.
6.
A Hoffman‐like coordination polymer with appreciable porosity and uncoordinated pyridyl groups, namely, [Fe(2,5‐bpp){Au(CN)2}2] ? x Solv (2,5‐bpp=2,5‐bis(pyrid‐4‐yl)pyridine; Solv=solvent), was synthesised and characterised. A series of fascinating spin‐crossover behaviours with abrupt, stepwise and hysteretic features were obtained by exchange with a range of protic solvents (ethanol, n‐propanol, isopropyl alcohol, sec‐butanol and isobutanol). Guest–host hydrogen‐bonding interactions involving the H‐accepting site of the framework are primarily responsible for the pronounced cooperativity of these spin‐crossover behaviours. Meanwhile, the tunable critical temperatures over a range of about 130 K are presumably attributable to a certain degree of competition between internal pressure and local electronic influences of solvents.  相似文献   

7.
The complex [Fe(teec)6](BF4)2 (teec = chloroethyltetrazole) shows a two-step complete spin-crossover transition in the temperature range 300-90 K. Time-resolved synchrotron powder diffraction experiments have been carried out in this temperature range, and crystal structure models have been obtained from the powder patterns by using the parallel tempering technique. Of these models, the low-spin state structure at 90 K has been refined completely with Rietveld refinement. Its structural characteristics are discussed in relation to the high-spin state model and other spin-crossover compounds. The complex shows a remarkable anisotropic unit-cell parameter contraction that is dependent on the applied cooling rate. In addition, the possible important implications for the interpretation of spin-crossover behavior in terms of structural changes are discussed.  相似文献   

8.
设计制备了一个新的常温自旋交叉配合物[Fe(dpp)(Mepy)2(NCS)2]。通过元素分析、红外光谱、电喷雾质谱和紫外光谱等方法对该配合物进行结构表征。变温磁化率研究发现该配合物的自旋转换温度Tc为330K。通过与同体系其他配合物的比较发现,配体的修饰对自旋交叉临界温度以及回滞宽度都有显著影响。  相似文献   

9.
Whereas the neat polymeric FeII compound {[Fe(bbtr)3][ClO4]2} (bbtr=1,4‐di(1,2,3‐triazol‐1‐yl)butane) shows an abrupt spin transition centered at 107 K facilitated by a crystallographic symmetry breaking, in the covalently linked 2D coordination network of {[Fe(bbtr)3][BF4]2}, FeII stays in the high‐spin state down to 10 K. However, strong cooperative effects of elastic origin result in reversible, persistent, and wavelength‐selective photoswitching between the low‐spin and high‐spin manifolds. This compound thus shows true light‐induced bistability below 100 K. The persistent bidirectional optical switching behavior is discussed as a function of temperature, irradiation time, and intensity. Crystallographic studies reveal a photoinduced symmetry breaking and serve to establish the correlation between structure and cooperative effects. The static and kinetic behavior is explicated within the framework of the mean‐field approximation.  相似文献   

10.
The ligand ttd(ttd=1,4,8,9-Tetraaza-triphenylene-2,3-dicarbonitrile) and a novel spin crossover complex [Fe(ttd)2(NCS)2]·H2O were synthesized, and characterized by elemental analysis, IR, MS, and UV-vis spec-troscopy. The temperature dependence of magnetic susceptibility shows that there are a little break between 150~190K and an unusual step transition with a 50K width between 190~240K. Compared with the other complexes with the resemble structure, it can be found that the influence of ligand is very notable.  相似文献   

11.
Twelve coordination polymers with formula {Fe(3‐Xpy)2[MII(CN)4]} (MII: Ni, Pd, Pt; X: F, Cl, Br, I; py: pyridine) have been synthesised, and their crystal structures have been determined by single‐crystal or powder X‐ray analysis. All of the fluoro and iodo compounds, as well as the chloro derivative in which MII is Pt, crystallise in the monoclinic C2/m space group, whereas the rest of the chloro and all of the bromo derivatives crystallise in the orthorhombic Pnc2 space group. In all cases, the iron(II) atom resides in a pseudo‐octahedral [FeN6] coordination core, with similar bond lengths and angles in the various derivatives. The major difference between the two kinds of structure arises from the stacking of consecutive two‐dimensional {Fe(3‐Xpy)2[MII(CN)4]} layers, which allows different dispositions of the X atoms. The fluoro and chloro derivatives undergo cooperative spin crossover (SCO) with significant hysteretic behaviour, whereas the rest are paramagnetic. The thermal hysteresis, if X is F, shifts toward room temperature without changing the cooperativity as the pressure increases in the interval 105 Pa–0.5 GPa. At ambient pressure, the SCO phenomenon has been structurally characterised at different significant temperatures, and the corresponding thermodynamic parameters were obtained from DSC calorimetric measurements. Compound {Fe(3‐Clpy)2[Pd(CN)4]} represents a new example of a “re‐entrant” two‐step spin transition by showing the Pnma space group in the intermediate phase (IP) and the Pnc2 space group in the low‐spin (LS) and high‐spin (HS) phases.  相似文献   

12.
The self‐assembly of iron(II) ions with rare octacyanidorhenate(V) metalloligands in a methanolic solution results in the formation of a nanometric pentadecanuclear {FeII9[ReV(CN)8]6(MeOH)24}?10 MeOH ( 1 ) molecule with a six‐capped body‐centered cubic topology. The cluster demonstrates a thermally‐induced spin‐crossover phase transition at T1/2=195 K which occurs selectively for a single FeII ion embedded in the center of a cluster core.  相似文献   

13.
自旋交叉配合物的研究是分子磁化学中的一个重要领域,并已引起人们的普遍关注。近期我们合成了一个新的配体dpq(dpq=dipyrazine[2,3f:2,3h]quinoxaline )和新的自旋交叉配合物[Fe(dpq)2(NCS)2]·1.5H2O。通过元素分析、红外光谱、质谱、核磁共振、紫外光谱等方法对其结构进行了表征。变温磁化率和穆斯堡尔谱学的研究表明标题化合物是一个新颖的自旋交叉配合物,而且显示出不常见的15K回滞宽度,在降温时伴有一小台阶。通过对比发现,配体的共轭性在自旋交叉配合物中的影响是非常重要的。  相似文献   

14.
Discrete molecular species that can perform certain functions in response to multiple external stimuli constitute a special class of multifunctional molecular materials called smart molecules. Herein, cyanido-bridged coordination clusters {[FeII(2-pyrpy)2]4[MIV(CN)8]2} ⋅ 4 MeOH ⋅ 6 H2O (M=Mo ( 1 solv ), M=W ( 2 solv ) and 2-pyrpy=2-(1-pyrazolyl)pyridine are presented, which show persistent solvent driven single-crystal-to-single-crystal transformations upon sorption/desorption of water and methanol molecules. Three full desolvation–resolvation cycles with the concomitant change of the host molecules do not damage the single crystals. More importantly, the Fe4M2 molecules constitute a unique example where the presence of the guests directly affects the pressure-induced thermal spin crossover (SCO) phenomenon occurring at the FeII centres. The hydrated phases show a partial SCO with approximately two out-of-four FeII centres undergoing a gradual thermal SCO at 1 GPa, while in the anhydrous form the pressure-induced SCO effect is almost quenched with only 15 % of the FeII centres undergoing high-spin to low-spin transition at 1 GPa.  相似文献   

15.
In the series of polymeric spin‐crossover compounds Fe(X‐py)2[Ag(CN)2)]2 (py=pyridine, X=H, 3‐Cl, 3‐methyl, 4‐methyl, 3,4‐dimethyl), magnetic and calorimetric measurements have revealed that the conversion from the high‐spin (HS) to the low‐spin (LS) state occurs by two‐step transitions for three out of five members of the family (X=H, 4‐methyl, and X=3,4‐dimethyl). The two other compounds (X=3‐Cl and 3‐methyl) show respectively an incomplete spin transition and no transition at all, the latter remaining in the HS state in the whole temperature range. The spin‐crossover behaviour of the compound undergoing two‐step transitions is well described by a thermodynamic model that considers both steps. Calculations with this model show low cooperativity in this type of systems. Reflectivity and photomagnetic experiments reveal that all of the compounds except that with X=3‐methyl undergo light‐induced excited spin state trapping (LIESST) at low temperatures. Isothermal HS‐to‐LS relaxation curves at different temperatures support the low‐cooperativity character by following an exponential decay law, although in the thermally activated regime and for aX=H and X=3,4‐dimethyl the behaviour is well described by a double exponential function in accordance with the two‐step thermal spin transition. The thermodynamic parameters determined from this isothermal analysis were used for simulation of thermal relaxation curves, which nicely reproduce the experimental data.  相似文献   

16.
设计制备了一个新的自旋交叉配合物[Fe(mtt)(phen)(NCS)2·]py。通过元素分析、红外光谱、质谱和紫外光谱等方法对该配合物进行结构表征。变温磁化率研究发现该配合物的自旋转换温度为Tc↑=197K,Tc↓=188K,回滞宽度9K。通过与同体系其他配合物的比较发现,配体的修饰对自旋交叉临界温度以及回滞宽度都有显著影响。  相似文献   

17.
A new bis(pyrazolylpyridine) ligand (H2L) has been prepared to form functional [Fe2(H2L)3]4+ metallohelicates. Changes to the synthesis yield six derivatives, X@[Fe2(H2L)3]X(PF6)2?xCH3OH ( 1 , x=5.7 and X=Cl; 2 , x=4 and X=Br), X@[Fe2(H2L)3]X(PF6)2?yCH3OH?H2O ( 1 a , y=3 and X=Cl; 2 a , y=1 and X=Br) and X@[Fe2(H2L)3](I3)2?3 Et2O ( 1 b , X=Cl; 2 b , X=Br). Their structure and functional properties are described in detail by single‐crystal X‐ray diffraction experiments at several temperatures. Helicates 1 a and 2 a are obtained from 1 and 2 , respectively, by a single‐crystal‐to‐single‐crystal mechanism. The three possible magnetic states, [LS–LS], [LS–HS], and [HS–HS] can be accessed over large temperature ranges as a result of the structural nonequivalence of the FeII centers. The nature of the guest (Cl? vs. Br?) shifts the spin crossover (SCO) temperature by roughly 40 K. Also, metastable [LS–HS] or [HS–HS] states are generated through irradiation. All helicates (X@[Fe2(H2L)3])3+ persist in solution.  相似文献   

18.
Two polymorphs of the spin crossover (SCO) compound [Fe(1,3‐bpp)2](ClO4)2 ( 1 and 2 ; 1,3‐bpp=2‐(pyrazol‐1‐yl)‐6‐(pyrazol‐3‐yl)pyridine) were prepared using a novel, stepwise procedure. Crystals of 1 deposit from dry solvents, while 2 is obtained from a solid‐state procedure, by sequentially removing lattice H2O molecules from the solvatomorph [Fe(1,3‐bpp)2](ClO4)2?2 H2O ( 2 ?2 H2O), using single‐crystal‐to‐single‐crystal (SCSC) transformations. Hydrate 2 ?2 H2O is obtained through the same reaction as 1 , now with 2.5 % of water added. Compounds 2 and 2 ?2 H2O are unstable in the atmosphere and absorb or lose one equivalent of water, respectively, to both yield the stable solvatomorph [Fe(1,3‐bpp)2](ClO4)2?H2O ( 2 ?H2O), also following SCSC processes. The four derivatives have been characterised by single‐crystal X‐ray diffraction (SCXRD). Furthermore, the homogeneity of the various compounds as well as their SCSC interconversions have been confirmed by powder X‐ray diffraction (PXRD). Polymorphs 1 and 2 exhibit abrupt SCO behaviour near room temperature with T1/2↑=279/316 K and T1/2↓=276/314 K (near 40 K of shift) and different cooperativity.  相似文献   

19.
The influence of the counteranion on the structure and the spin-transition properties of original 1D bis(tetrazole) Fe(II) systems, namely [Fe(btzx)(3)]X(2) (X=PF(6) (-) (1), CF(3)SO(3) (-) (2) and ClO(4) (-) (3); btzx=m-xylylenebis(tetrazole)) is studied. The X-ray crystal structures of compounds 1 and 2 are described in detail. These structures present a solvent molecule encapsulated within pockets formed by btzx ligands along the 1D coordination chains. Compound 2 is shown to be the first structurally characterised alternating HS-LS 1D spin-transition system (HS=high spin, LS=low spin). The magnetic susceptibility measurements of all three compounds are compared. The degree of completion and the transition temperature are both drastically influenced by the counterion used, while surprisingly, the cooperative nature of the transition is not affected by the choice of counterion. Compounds 1 and 2 are further studied by M?ssbauer spectroscopy and their distinct LIESST properties are compared.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号