首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inspired by structures of antenna-reaction centers in photosynthesis,the complex micelle was prepared from zinc tetra-phenyl porphyrin (ZnTPP),fullerene derivative (PyC60) and poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-bPCL).The core-shell structure made the hydrophobic donor-acceptor system work in aqueous.In micellar core,coordination interaction occurred between ZnTPP and PyC60 molecules which ensured the enhanced energy migration from the donor to the acceptor.The enhanced interaction between porphyrin and fullerene was confirmed by absorption,steady-state fluorescence and transient fluorescence.The generation of singlet oxygen and superoxide radical was detected by iodide method and reduction of nitro blue tetrazolium,respectively,which confirmed that electron transfer reaction in the complex micellar core occurred.Moreover,the complex micelle exhibited effective electron transfer performance in photodebromination of 2,3-dibromo-3-phenylpropionic acid.The complex micellar structure endowed the donor-acceptor system with improved stability under irradiation.This strategy could be helpful for designing new electron transfer platform and artificial photosynthetic system.  相似文献   

2.
The photocurrent at the polarized water/1,2-dichloroethane (DCE) interface was successfully observed in the presence of a lipophilic sensitizer, 5,10,15,20-tetraphenylporphyrinato zinc (ZnTPP), in the organic phase. The photocurrent transient responses were apparently affected by the employed organic supporting electrolyte: tetrapenthylammonium tetraphenylborate (TPnATPB) or tris(tetraoctylammonium)tungstophosphate ((TOcA)3PW12O40). The photocurrent measured in the TPnATPB system exhibited rather slow responses associated with the ion transfer of photoproducts. On the other hand, the photoinduced heterogeneous electron transfer could be observed in the use of (TOcA)3PW12O40. The photocurrent intensity in the (TOcA)3PW12O40 system exhibited an apparent pH dependence and the photoreduction of hydrogen ions probably took place at the water/DCE interface. By analyzing the real and imaginary components of the photocurrent depending on the photoexcitation frequency, we roughly estimated the phenomenological rate constants of the product separation (k(ps)) and recombination (k(rec)) processes as log(k(ps)/s(-1)) = 1.5 +/- 0.2 and log(k(rec)/s(-1)) = 1.8 +/- 0.1, respectively.  相似文献   

3.
Water-soluble carbon-nanohorn-tetrathiafulvalene (CNH-TTF) nanoensembles were prepared by utilizing positively charged pyrene as an assembly medium and characterized by spectroscopy and electron microscopy. Electronic interactions within the nanoensemble were probed by optical spectroscopy, indicating electron transfer between the TTF units and CNHs after light illumination.  相似文献   

4.
具有单层二维蜂窝状结构的石墨烯在材料科学和能源转化领域吸引了巨大的研究兴趣.在光催化领域,因其独特的二维平面结构、优异的电荷传输能力、超高的理论比表面积、良好的透光性和化学稳定性,可作为高效的助催化剂,以提高光催化体系的太阳能转换效率.在一些特定的光催化体系中,石墨烯还可以作为大分子光敏剂产生光生电子.近年来,石墨烯基...  相似文献   

5.
Commercially available cellulose acetate hollow fiber membranes have been modified to incorporate high concentrations of zinc tetraphenylporphyrin (ZnTPP). The modification procedure involves swelling the fibers in a tetrahydrofuran solution saturated with ZnTPP, followed by an aqueous rinse which contracts the fibers and entraps the ZnTPP. The modified membranes are dark purple, containing up to 3% ZnTPP by weight. The membranes remain sufficiently durable to sustain a flow system, and they are impermeable to ionic solutes. The membranes exhibit fluorescence with a short lifetime (<10 nsec) and a spectrum consistent with that of ZnTPP. The membranes are effective as a heterogeneous photosensitizer for the generation of singlet molecular oxygen, monitored by the oxygenation of aqueous 2-furylmethanol. Initial efforts to develop electrontransfer reactions photosensitized by these modified membranes are described. Novel polyether-substituted electron donor and acceptor molecules are effective at increasing photosensitized electron transfer from ZnTPP in nonionic Triton X-100 micelles, but offer only slight success from the ZnTPP-modified membranes.  相似文献   

6.
A simple and effective glucose biosensor based on immobilization of glucose oxidase (GOD) in graphene (GR)/Nafion film was constructed. The results indicated that the immobilized GOD can maintain its native structure and bioactivity, and the GR/Nafion film provides a favorable microenvironment for GOD immobilization and promotes the direct electron transfer between the electrode substrate and the redox center of GOD. The electrode reaction of the immobilized GOD shows a reversible and surface‐controlled process with the large electron transfer rate constant (ks) of 3.42±0.08 s?1. Based on the oxygen consumption during the oxidation process of glucose catalyzed by the immobilized GOD, the as‐prepared GOD/GR/Nafion/GCE electrode exhibits a linear range from 0.5 to 14 mmol·L?1 with a detection limit of 0.03 mmol·L?1. Moreover, it displays a good reproducibility and long‐term stability.  相似文献   

7.
史林启 《高分子科学》2017,35(11):1328-1341
Inspired by structures of antenna-reaction centers in photosynthesis, the complex micelle was prepared from zinc tetra-phenyl porphyrin (ZnTPP), fullerene derivative (PyC60) and poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-b-PCL). The core-shell structure made the hydrophobic donor-acceptor system work in aqueous. In micellar core, coordination interaction occurred between ZnTPP and PyC60 molecules which ensured the enhanced energy migration from the donor to the acceptor. The enhanced interaction between porphyrin and fullerene was confirmed by absorption, steady-state fluorescence and transient fluorescence. The generation of singlet oxygen and superoxide radical was detected by iodide method and reduction of nitro blue tetrazolium, respectively, which confirmed that electron transfer reaction in the complex micellar core occurred. Moreover, the complex micelle exhibited effective electron transfer performance in photodebromination of 2,3-dibromo-3-phenylpropionic acid. The complex micellar structure endowed the donor-acceptor system with improved stability under irradiation. This strategy could be helpful for designing new electron transfer platform and artificial photosynthetic system.  相似文献   

8.
采用原子转移自由基聚合(ATRP)法合成了嵌段共聚物聚苯乙烯-聚丙烯酸叔丁酯(PSt-PtBuA), 在酸性条件下水解得到聚苯乙烯-聚丙烯酸(PSt-PAA), 利用核磁共振氢谱(1HNMR)、凝胶渗透色谱(GPC)等对产物进行了表征. PSt-PAA在Tris-HCl缓冲溶液中(pH=7.0)形成临界聚集浓度(CAC)为0.015 g/L的聚集体. PSt-PAA与聚2-甲基丙烯酰氧基乙基三甲基氯化铵(PMADQUAT)可通过静电相互作用形成聚离子复合物(polyion complex, PIC), 当 m(PMADQUAT)/m(PSt-PAA)=3时, 形成的聚离子复合物的CAC为0.005 g/L. 动态光散射(DLS)和透射电镜(TEM)结果表明, 形成聚离子复合物后, 聚集体粒径变小. 聚合物形成聚集体可包载二乙二醇单甲醚修饰的C70(MDG-C70)、原卟啉(PPIX)、四苯基锌卟啉(ZnTPP)和四苯基卟啉(TPP)等光敏剂, 并增强光敏剂在缓冲溶液中的溶解度. 光照条件下, MDG-C70、PPIX、ZnTPP和TPP在聚离子复合物聚集体m(PMADQUAT)/m(PSt-PAA)=3的溶液中的单重态氧量子产率分别是在PSt-PAA聚集体溶液中的1.64、2.63、2.60和2.20倍. 而在缓冲溶液中,由于光敏剂的聚集作用,未能检测到单重态氧的产生。研究结果表明,聚离子复合物聚集体能够包载光敏剂,是提高单重态氧产率的一个有效途径.  相似文献   

9.
Otake M  Itou M  Araki Y  Ito O  Kido H 《Inorganic chemistry》2005,44(23):8581-8586
Photoinduced electron-transfer and electron-mediation processes from the excited triplet state of zinc tetraphenylporphyrin (3ZnTPP) to the hexyl viologen dication (HV2+) in the presence of oxo-acetato-bridged triruthenium clusters, [Ru3(mu3-O)(mu-CH3CO2)6L3]+, have been revealed by the transient absorption spectra in the visible and near-IR regions. By the nanosecond laser-flash photolysis of ZnTPP in the presence of HV2+ and [Ru3(mu3-O)(mu-CH3CO2)6L3]+, the transient absorption bands of the radical cation of ZnTPP (ZnTPP*+) and the reduced viologen (HV*+) were initially observed with the concomitant decay of 3ZnTPP, after which an extra electron of HV*+ mediates to [Ru3(mu3-O)(mu-CH3CO2)6L3]+, efficiently generating [Ru3(mu3-O)(mu-CH3CO2)6L3]0 with high potential. Although back-electron transfer took place between ZnTPP*+ and [Ru3(mu3-O)(mu-CH3CO2)6L3]0 in the diffusion-controlled limit, [Ru3(mu3-O)(mu-CH3CO2)6L3]0 accumulates at a steady concentration upon further addition of 1-benzyl-1,4-dihydronicotinamide (BNAH) as a sacrificial donor to re-produce ZnTPP from ZnTPP*+. Therefore, we established a novel system to accumulate [Ru3(mu3-O)(mu-CH3CO2)6L3]0 as an electron pool by the excitation of ZnTPP as photosensitizing electron donor in the presence of HV2+ and BNAH as an electron-mediating reagent and sacrificial donor, respectively. With the increase in the electron-withdrawing abilities of the ligands, the final yields of [Ru3(mu3-O)(mu-CH3CO2)6L3]0 increased.  相似文献   

10.
A photoinduced proton reduction to produce H2 was found to take place in the system using zinc tetraphenylporphine (ZnTPP) incorporated into a Nafion® membrane coated on a platinum electrode (denoted as Pt/Nf[ZnTPP]). When visible light (λ > 390 nm) was irradiated on the Pt/Nf[ZnTPP] system, a photocurrent was generated under applied potentials below −0.10 (v. Ag/AgCl). The action spectrum for the photocurrent agreed with the absorption spectrum of the Nf[ZnTPP] membrane, showing that the present photochemical process is induced on light absorption by the ZnTPP. By measuring the emission decay of ZnTPP under the photoelectrochemical conditions, it was exhibited that the emission from the singlet excited ZnTPP is quenched by the cathodic potentials. The amount of the H2 produced increased with the cathodic potentials. These results indicated that, in the photochemical primary process, a reductive quenching takes place by electron injection from the Pt electrode to the singlet excited ZnTPP forming ZnTPP.–, subsequently leading to the H2 formation by a bimolecular catalysis of the ZnTPP. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
Electroabsorption and electrofluorescence spectra of a fullerene derivative, C60(C18)2, and its mixture with zinc-tetraphenylporphyrin (ZnTPP) have been measured by using electric field modulation spectroscopy. The change in dipole moment is significant in the electroabsorption spectra both of C60(C18)2 and of a complex composed of C60(C18)2 and ZnTPP, indicating that the excited states both of C60(C18)2 and of a complex between C60(C18)2 and ZnTPP have a large charge-transfer character. The fluorescence quantum yield of C60(C18)2 decreases in the presence of an electric field, which probably arises from the field-induced acceleration of the intramolecular nonradiative process of C60(C18)2 in the fluorescent state. In a mixture between ZnTPP and C60(C18)2, electrofluorescence spectra show the field-induced enhancement for the fluorescence of ZnTPP and the field-induced de-enhancement for the fluorescence both of C60(C18)2 and of the complex between ZnTPP and C60(C18)2. A theoretical analysis clearly shows that the field-induced enhancement of the ZnTPP fluorescence in a mixture results from the field-induced deceleration of the rate of the electron transfer from the excited ZnTPP to C60(C18)2. The standard free energy gap for the photoinduced electron-transfer process is estimated based on the theoretical simulation of the field-dependent fluorescence intensity.  相似文献   

12.
The graphene oxide (GO) nanosheets were produced by chemical conversion of graphite, and were characterized by transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR). An electrochemical sensor based on Ni/graphene (GR) composite film was developed by incorporating Ni2+ into the graphene oxide film modified glassy carbon electrode (Ni/GO/GCE) through the electrostatic interactions with negatively charged graphene oxide. The Ni2+/graphene modified glassy carbon electrode (Ni/GR/GCE) was prepared by cyclic voltammetric scanning of Ni/GO/GCE in the potential range from ?1.5 to 0.2 V at 50 mV s?1 for 5 cycles. The electrochemical activity of Ni/GR/GCE was illustrated in 0.10 M NaOH using cyclic voltammetry. The Ni/GR/GCE exhibits the characteristic of improved reversibility and enhanced current responses of the Ni(III)/Ni(II) couple. The introduction of conductive graphene not only greatly facilitates the electron transfer of Ni2+, but also dramatically improves the long-term stability of the sensor by providing the electrostatic interactions. Ni/GR/GCE also shows good electrocatalytic activity toward the oxidation of glucose. The Ni/GR/GCE gives a good linear range over 10 to 2700 μM with a detection limit of 5 μM towards the determination of glucose by amperometry. This sensor keeps over 85% activity towards 0.1 mM glucose after being stored in air for a month, respectively. Furthermore, the modified sensor was successfully applied to the sensitive determination of glucose in blood samples.  相似文献   

13.
Electron transfer dynamics in a photoactive coating made of CdSe quantum dots (QDs) and Au nanoparticles (NPs) tethered to a framework of ionic liquid functionalized graphene oxide (FGO) nanosheets and mesoporous titania (TiO(2)) was studied. High resolution transmission electron microscopy analyses on TiO(2)/CdSe/FGO/Au not only revealed the linker mediated binding of CdSe QDs with TiO(2) but also, surprisingly, revealed a nanoscale connectivity between CdSe QDs, Au NPs and TiO(2) with FGO nanosheets, achieved by a simple solution processing method. Time resolved fluorescence decay experiments coupled with the systematic quenching of CdSe emission by Au NPs or FGO nanosheets or by a combination of the latter two provide concrete evidences favoring the most likely pathway of ultrafast decay of excited CdSe in the composite to be a relay mechanism. A balance between energetics and kinetics of the system is realized by alignment of conduction band edges, whereby, CdSe QDs inject photogenerated electrons into the conduction band of TiO(2), from where, electrons are promptly transferred to FGO nanosheets and then through Au NPs to the current collector. Conductive-atomic force microscopy also provided a direct correlation between the local nanostructure and the enhanced ability of composite to conduct electrons. Point contact I-V measurements and average photoconductivity results demonstrated the current distribution as well as the population of conducting domains to be uniform across the TiO(2)/CdSe/FGO/Au composite, thus validating the higher photocurrent generation. A six-fold enhancement in photocurrent and a 100 mV increment in photovoltage combined with an incident photon to current conversion efficiency of 27%, achieved in the composite, compared to the inferior performance of the TiO(2)/CdSe/Au composite imply that FGO nanosheets and Au NPs work in tandem to promote charge separation and furnish less impeded pathways for electron transfer and transport. Such a hierarchical rapid electron transfer model can be adapted to other nanostructures as well, as they can favorably impact photoelectrochemical performance.  相似文献   

14.
In this paper, a carbon ionic liquid electrode (CILE) was fabricated using ionic liquid 1-hexylpyridinium hexafluorophosphate as modifier, which was further in situ electrodeposited with graphene (GR) and gold nanoparticles step by step to get an Au/GR nanocomposite modified CILE. Myoglobin (Mb) was further immobilized on the Au/GR/CILE surface with Nafion film to get the modified electrode denoted as Nafion/Mb/Au/GR/CILE. Cyclic voltammetric experiments indicated that a pair of well-defined quasi-reversible redox peaks appeared in pH 3.0 phosphate buffer solution with the formal potential (E 0′) located at ?0.197 V (vs. saturated calomel electrode), which was the typical characteristics of Mb heme Fe(III)/Fe(II) redox couples. Thus, the direct electron transfer rate between Mb and the modified electrode was promoted due to the high conductivity and increased surface area of Au/GR nanocomposite present on electrode surface. Based on the cyclic voltammetric data, the electrochemical parameters of Mb on the modified electrode were calculated. The Mb-modified electrode showed excellent electrocatalytic activities towards the reduction of trichloroacetic acid and H2O2 with wider linear range and lower detection limit. Using GR and Au nanoparticles modified CILE, a new third-generation electrochemical Mb biosensor was constructed with good stability and reproducibility.  相似文献   

15.
Tetracationic water-soluble porphyrin (H(2)P(4+)) has been immobilized by pi-pi stacking interactions onto the skeleton of carbon nanohorns (CNH), without disrupting their pi-electronic network. The stable aqueous solution of the CNH-H(2)P(4+) nanoensemble was examined by both electron microscopy and spectroscopic techniques. The efficient fluorescence quenching of the H(2)P(4+) moiety in the CNH-H(2)P(4+) nanoensemble was probed by steady-state as well as time-resolved fluorescence emission spectroscopy, suggesting charge separation from the photoexcited H(2)P(4+) to CNH. In the presence of methyl viologen dication (MV(2+)) and a hole trap, accumulation of the reduced species of methyl viologen was observed by the photoillumination of CNH-H(2)P(4+), suggesting that the electron migration from the initially formed charge-separated state takes place. Transient absorption spectroscopy gave further insights on the transient species such as the charge-separated state (CNH(*-))-(H(2)P(4+))(*+), which was consumed in the presence of MV(2+) and hole shifter, leaving the reduced methyl viologen.  相似文献   

16.
Two or eight zinc triphenyl porphyrins were conjugated with Zn-phthalocyanine or H2-phthalocyanine to form ZnPc-(ZnTPP)2, ZnPc-(ZnTPP)8, H2Pc-(ZnTPP)2 and H2Pc-(ZnTPP)8. Energy transfers from the porphyrin moiety to phthalocyanine part were quantitatively studied with the modality of fluorescence resonance energy transfer (FRET). By measuring the fluorescence increment from the phthalocyanine moiety and the decrease from porphyrin part under selective excitation at the B band of the porphyrin part in those conjugated compounds and their equimolar mixture of compositions, energy transfer efficiencies were estimated to be 90% for H2Pc-(ZnTPP)8 and ZnPc-(ZnTPP)8, and 60%, 30% for ZnPc-(ZnTPP)2 and H2Pc-(ZnTPP)2, respectively.  相似文献   

17.
采用微湿含浸法制备了有序中孔炭/四氧化三铁磁性材料.采用透射电镜和X射线衍射对复合材料进行了表征.将血红蛋白(Hb)固定于材料表面,对其直接电化学行为进行了研究,结果表明Hb在该材料内仍保持了其生物活性,在pH=7.0的PBS缓冲液中,血红蛋白表现出一对峰形良好的准可逆氧化还原峰,为Hb的Fe(Ⅲ)/Fe(Ⅱ)电对的特征峰,求出式电位E0’为-0.306 V,电子转移数为n=1.226,电荷传递系数为α=0.51,表观异相电子转移速率常数为KS=0.0144s-1.在3.00×10-6到1.50×10-4mol/L浓度范围内,血红蛋白的浓度与其响应电流呈良好的线性关系,线性相关系数为R=0.9924,最低检测限为0.270×10-6mol/L.  相似文献   

18.
A multilayers of graphene (GR) and myoglobin (Mb) modified electrode was fabricated with a layer of chitosan film. Electrochemical behaviors of the modified electrode were studied by cyclic voltammetry, which exhibited a couple of well‐behaved, stable and quasi‐reversible cathodic and anodic peaks, indicating that Mb realized its direct electron transfer on the biosensor. The experimental result may be accredited to the existence of multilayers conductive GR nanosheets that could provide big specific surface area, fine biological compatibility and ultrahigh electron transfer route for the immobilized Mb. The catalytic reduction peak currents of the biosensor to the detection of trichloroacetic acid were established from 0.6 to 26.0 mM accompanied with the detection limit as 0.15 mM (3σ). Therefore a novel third‐generation mediator‐free electrochemical sensor was successful prepared with the usage of multilayers of GR.  相似文献   

19.
Ye D  Luo L  Ding Y  Liu B  Liu X 《The Analyst》2012,137(12):2840-2845
A novel Co(3)O(4) nanoparticles-decorated graphene (GR) composite was synthesized by electro-deposition and characterized by scanning electron micrographs, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy and transmission electron microscopy. Then, amperometric biosensors based on a Co(3)O(4) nanoparticles-decorated GR composite modified glassy carbon electrode (GCE) were developed for the sensitive determination of L-tryptophan (Trp). The direct electrooxidation behaviors of Trp on the Co(3)O(4)/GR/Nafion/GCE were carefully investigated by cyclic voltammetry and square wave voltammetry. The results indicated that Trp showed an increase of the oxidation peak current with a negative shift of the oxidation peak potential compared with that on the bare GCE. Under optimum conditions, the proposed biosensor can be applied to the quantification analysis of Trp with a wide linear range covering 0.05-10 μM (R = 0.996) and a low detection limit of 0.01 μM. The experimental results also showed that the sensor exhibited good reproducibility, long-term stability as well as high selectivity. Moreover, the novel biosensor for the detection of Trp in a real amino acid sample with satisfactory results has been proved.  相似文献   

20.
The novel (mu-alkoxo)bis(mu-carboxylato)diruthenium complex K[Ru(2)(dhpta)(mu-O(2)C-p-ZnTPP)(2)] 3 was prepared by simple ligand substitution reaction. Strong antiferromagnetic interaction between two Ru(III) ions of 3 was observed with a coupling constant of -425 approximately -404 cm(-1). The cyclic voltammogram of 3 can be explained in terms of superposition of those of ZnTPP-p-CO(2)H and K[Ru(2)(dhpta)(mu-O(2)CPh)(2)] 2, indicating no significant electrochemical interaction. The large conproportionation constant estimated from the reduction potentials for Ru(III)Ru(III) and Ru(II)Ru(III) indicates great stability of the mixed-valence state. The mixed-valence species [Ru(II)Ru(III)(dhpta)(mu-O(2)C-p-ZnTPP)(2)](2-) 4 was prepared by controlled potential electrolysis. The electronic absorption spectrum of 4 was quite similar to that of [Ru(II)Ru(III)(dhpta)(mu-O(2)CCH(3))(2)](2-) which is a typical Class II complex. The fluorescence from the S(2) state of the ZnTPP unit of 3 was significantly (78%) quenched. The electron transfer from the ZnTPP unit to Ru(III) ions in 3 is a plausible mechanism, even though energy transfer could not be ruled out completely. The free energy change for electron transfer, Delta G(CS), was estimated to be ca.-1.1 eV, which is similar to typical values for the reorganization energy lambda in polar solvents. Hence, the electron transfer scheme is situated almost at the top of the Marcus parabola, enabling ultrafast electron transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号