首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Three six-coordinate DyIII single-molecule magnets (SMMs) [Dy(OtBu)2(L)4]+ with local D4h symmetry are obtained by optimizing the equatorial ligands. One of the compounds with L=4-phenylpyridine shows an energy barrier (Ueff) of 2075(11) K, which is the third largest Ueff, and the first Ueff>2000 K for SMMs with axial-type symmetry so far. Ab initio analysis indicates that the exceptional uniaxial magnetic anisotropy is deeply related to the axially compressed octahedral geometry. This work provides a new insight into the local D4h symmetry for high-performance SMMs.  相似文献   

2.
Two-dimensional (2D) AA′n−1MnX3n+1 type halide perovskites incorporating straight-chain symmetric diammonium cations define a new type of structure, but their optoelectronic properties are largely unexplored. Reported here is the synthesis of a centimeter-sized AA′n−1MnX3n+1 type perovskite, BDAPbI4 (BDA=NH3C4H8NH3), single crystal and its charge-transport properties under X-ray excitation. The crystal shows a staggered configuration of the [PbI6]4− layers, a band gap of 2.37 eV, and a low trap density of 3.1×109 cm−3. The single-crystal X-ray detector exhibits an excellent sensitivity of 242 μC Gyair−1 cm−2 under the 10 V bias (0.31 V μm−1), a detection limit as low as 430 nGyair s−1, ultrastable response current, a stable baseline with the lowest dark current drift of 6.06×10−9 nA cm−1 s−1 V−1, and rapid response time of τrise=7.3 ms and τfall=22.5 ms. These crystals are promising candidates for the next generation of optoelectronic devices.  相似文献   

3.
Three new Dy complexes have been prepared according to a complex‐as‐ligand strategy. Structural determinations indicate that the central Dy ion is surrounded by two LZn units (L2? is the di‐deprotonated form of the N2O2 compartmental N,N′‐2,2‐dimethylpropylenedi(3‐methoxysalicylideneiminato) Schiff base. The Dy ions are nonacoordinate to eight oxygen atoms from the two L ligands and to a water molecule. The Zn ions are pentacoordinate in all cases, linked to the N2O2 atoms from L, and the apical position of the Zn coordination sphere is occupied by a water molecule or bromide or chloride ions. These resulting complexes, formulated (LZnX)‐Dy‐(LZnX), are tricationic with X=H2O and monocationic with X=Br or Cl. They behave as field‐free single‐molecule magnets (SMMs) with effective energy barriers (Ueff) for the reversal of the magnetization of 96.9(6) K with τ0=2.4×10?7 s, 146.8(5) K with τ0=9.2×10?8 s, and 146.1(10) K with τ0=9.9×10?8 s for compounds with Zn?OH2, Zn?Br, and Zn?Cl motifs, respectively. The Cole–Cole plots exhibit semicircular shapes with α parameters in the range of 0.19 to 0.29, which suggests multiple relaxation processes. Under a dc applied magnetic field of 1000 Oe, the quantum tunneling of magnetization (QTM) is partly or fully suppressed and the energy barriers increase to Ueff=128.6(5) K and τ0=1.8×10?8 s for 1 , Ueff=214.7 K and τ0=9.8×10?9 s for 2 , and Ueff=202.4 K and τ0=1.5×10?8 s for 3 . The two pairs of largely negatively charged phenoxido oxygen atoms with short Dy?O bonds are positioned at opposite sides of the Dy3+ ion, which thus creates a strong crystal field that stabilizes the axial MJ=±15/2 doublet as the ground Kramers doublet. Although the compound with the Zn?OH2 motifs possesses the larger negative charges on the phenolate oxygen atoms, as confirmed by using DFT calculations, it exhibits the larger distortions of the DyO9 coordination polyhedron from ideal geometries and a smaller Ueff value. Ab initio calculations support the easy‐axis anisotropy of the ground Kramers doublet and predict zero‐field SMM behavior through Orbach and TA‐QTM relaxations via the first excited Kramers doublet, which leads to large energy barriers. In accordance with the experimental results, ab initio calculations have also shown that, compared with water, the peripheral halide ligands coordinated to the Zn2+ ions increase the barrier height when the distortions of the DyO9 have a negative effect. All the complexes exhibit metal‐centered luminescence after excitation into the UV π–π* absorption band of ligand L2? at λ=335 nm, which results in the appearance of the characteristic DyIII (4F9/26HJ/2; J=15/2, 13/2) emission bands in the visible region.  相似文献   

4.
Following a novel synthetic strategy where the strong uniaxial ligand field generated by the Ph3SiO? (Ph3SiO?=anion of triphenylsilanol) and the 2,4‐di‐tBu‐PhO? (2,4‐di‐tBu‐PhO?=anion of 2,4‐di‐tertbutylphenol) ligands combined with the weak equatorial field of the ligand LN6 , leads to [DyIII(LN6)(2,4‐di‐tBu‐PhO)2](PF6) ( 1 ), [DyIII(LN6)(Ph3SiO)2](PF6) ( 2 ) and [DyIII(LN6)(Ph3SiO)2](BPh4) ( 3 ) hexagonal bipyramidal dysprosium(III) single‐molecule magnets (SMMs) with high anisotropy barriers of Ueff=973 K for 1 , Ueff=1080 K for 2 and Ueff=1124 K for 3 under zero applied dc field. Ab initio calculations predict that the dominant magnetization reversal barrier of these complexes expands up to the 3rd Kramers doublet, thus revealing for the first time the exceptional uniaxial magnetic anisotropy that even the six equatorial donor atoms fail to negate, opening up the possibility to other higher‐order symmetry SMMs.  相似文献   

5.
A rational approach to modulating easy-axis magnetic anisotropy by varying the axial donor ligand in heptacoordinated FeII complexes has been explored. In this series of complexes with formulae of [Fe(H4L)(NCS)2] ⋅ 3 DMF ⋅ 0.5 H2O ( 1 ), [Fe(H4L)(NCSe)2] ⋅ 3 DMF ⋅ 0.5 H2O ( 2 ), and [Fe(H4L)(NCNCN)2] ⋅ DMF ⋅ H2O ( 3 ) [H4L=2,2′-{pyridine-2,6-diylbis(ethan-1-yl-1-ylidene)}bis(N-phenylhydrazinecarboxamide)], the axial positions are successively occupied by different nitrogen-based π-donor ligands. Detailed dc and ac magnetic susceptibility measurements reveal the existence of easy-axis magnetic anisotropy for all of the complexes, with 1 [Ueff=21 K, τ0=1.72×10−6 s] and 2 [Ueff=25 K, τ0=2.25×10−6 s] showing field-induced slow magnetic relaxation behavior. However, both experimental studies and theoretical calculations indicate the magnitude of the D value of complex 3 to be larger than those of complexes 1 and 2 due to the axial bond angle being smaller than that for an ideal geometry. Detailed analysis of the field and temperature dependences of relaxation time for 1 and 2 has revealed that multiple relaxation processes (quantum tunneling of magnetization, direct, and Raman) are involved in slow magnetic relaxation for both of these complexes. Magnetic dilution experiments support the role of intermolecular short contacts.  相似文献   

6.
Complex multicomponent, multispin molecular system, consisting of a septet trinitrene, two quintet dinitrenes, and three triplet mononitrenes, was obtained by the photolysis of 2,4,6-triazido-3-cyano-5-fluoropyridine in solid argon. To identify these paramagnetic products, electron paramagnetic resonance spectroscopy in combination with line-shape spectral simulations and density functional theory calculations was used. The products of the photolysis was found to be triplet 2,4-diazido-3-cyano-5-fluoropyridyl-6-nitrene (DT = 1.000 cm−1, ET = 0), triplet 2,4-diazido-3-cyano-5-fluoropyridyl-2-nitrene (DT = 1.043 cm−1, ET = 0), triplet 2,6-diazido-3-cyano-5-fluoropyridyl-4-nitrene (DT = 1.128 cm−1, ET = 0 cm−1), quintet 4-azido-3-cyano-5-fluoropyridyl-2,6-dinitrene (DQ = 0.211 cm−1, EQ = 0.0532 cm−1), quintet 2-azido-3-cyano-5-fluoropyridyl-4,6-dinitrene (DQ = 0.208 cm−1, EQ = 0.0386 cm−1), and septet 3-cyano-5-fluoropyridyl-2,4,6-trinitrene (DS = −0.1017 cm−1, ES = −0.0042 cm−1) in a 38:4:7:22:14:4 ratio, respectively.  相似文献   

7.
Orthogonal phenoxazine-styryl BODIPY compact electron donor/acceptor dyads were prepared as heavy atom-free triplet photosensitizers (PSs) with strong red light absorption (ϵ=1.33×105 M−1 cm−1 at 630 nm), whereas the previously reported triplet photosensitizers based on the spin-orbit charge transfer intersystem crossing (SOCT-ISC) mechanism show absorption in a shorter wavelength range (<500 nm). More importantly, a long-lived triplet state (τT=333 μs) was observed for the new dyads. In comparison, the triplet state lifetime of the same chromophore accessed with the conventional heavy atom effect (HAE) is much shorter (τT=1.8 μs). Long triplet state lifetime is beneficial to enhance electron or energy transfer, the primary photophysical processes in the application of triplet PSs. Our approach is based on SOCT-ISC, without invoking of the HAE, which may shorten the triplet state lifetime. We used bisstyrylBodipy both as the electron acceptor and the visible light-harvesting chromophore, which shows red-light absorption. Femtosecond transient absorption spectra indicated the charge separation (109 ps) and SOCT-ISC (charge recombination, CR; 2.3 ns) for BDP-1 . ISC efficiency of BDP-1 was determined as ΦT=25 % (in toluene). The dyad BDP-3 was used as triplet PS for triplet-triplet annihilation upconversion (upconversion quantum yield ΦUC=1.5 %; anti-Stokes shift is 5900 cm−1).  相似文献   

8.
The design and synthesis of clusters possessing the same number of cores but different connection methods and properties have always been difficult. Herein, we used 2-pyridinaldehyde, 1,3-diamino-2-propanol, and Dy (ClO4)3·6H2O at room temperature (RT) to obtain the cluster [Dy4(L1)4(μ2-OH)4]·4ClO4 ( 1 , HL1 = 2-pyridinecarboxaldehyde-1,3-diamino-2-propanol) with square Dy4O8 cluster cores. Cluster 1 consisted of four Schiff base ligands (L1), four Dy(III) ions, four bridged (μ2-OH), and four free ClO4. The ligand HL1 was formed by in situ Schiff base reaction with 2-pyridinecarbaldehyde and 1,3-diamino-2-propanol in the presence of Dy(III) ions. 2-Aldehyde-8-hydroxyquinoline, 1,3-diamino-2-propanol, and Dy (NO3)3·6H2O reacted at RT to yield a tetranuclear Dy(III) cluster [Dy4(L2)2(μ3-OH)2(NO3)4(EtOH)2]·2CH3CN ( 2 , H3L2 = 2-aldehyde-8-hydroxyquinoline-1,3-diamino-2-propanol) with butterfly-shaped Dy4O6 cluster core. Cluster 2 consisted of two ligands (L2)3−, four Dy(III) ions, two bridged μ3-OH, two end-group-coordinated ethanol molecules, and four bidentate-chelated NO3. The in situ reaction of 2-aldehyde-8-hydroxyquinoline and 1,3-diamino-2-propanol under Dy(III) ion-assisted catalytic conditions provided the ligand H3L2. It is worth noting that the magnetic test showed that 1 is a typical single-molecule magnet (SMM), whereas 2 only showed a significant frequency dependence behavior. We considered Orbach and Raman processes (τ−1 = τ0−1 exp(−Ueff/kBT) + CTn) to fit 1 and 2 in the high-temperature range and obtained Ueff = 7.01 and 5.43 K and τ0 = 1.18 × 10−4 and 4.14 × 10−5 s, respectively.  相似文献   

9.
Degradation under the simultaneous effects of mechanical stress and temperature in polyolefins (PE, PP), composites on their basis (PE+PP fibre, PP+PP fibre, PP+glass fibre) and radiation low-density polyethylene (X-LDPE) used in high-voltage cables obeys the thermofluctuation theory of Zhourkov (in certain σ and τ0 intervals) based on the theory of Arrhenius is presented in the following form: τσ = τ0 exp[(U0γσ)/ RT] (1) where τ is durability. τ0 is a constant (10−12-10−13s) equal to period of vibrations of atoms around equilibrium position, U0 is the activation energy of the mechanical destruction process (at σ = 0), γ is a structure-sensitive parameter, T is absolute temperature and R is universal gas constant. Electric degradation under the effects of electric field and temperature in the materials mentioned above obeys the equation: τE = τ0 exp[(W0χE)/ RT] (2) Here, τE, W0 and χ are analogous to τσ, U0 and γ, respectively. It is assumed that the following equation is valid under the simultaneous effects of E, σ and T: τσ,E = τ0 exp[(U0 − (γσ + χE))/ RT]. (3) electric degradation  相似文献   

10.
A dinuclear Dy (III) complex [Dy2( L 1 )2(NO3)4]·2CH3CN ( 1 ) (H L 1 = 1,3-bis{[(E)-pyridin-2-ylmethylene]amino}propan-2-ol) was obtained via the reaction of 1,3-diamino-2-propanol, 2-pyridyaldehyde and Dy (NO3)3·6H2O at room temperature. In the structure of complex 1 , two Dy (III) ions are in the N4O6 coordination environment provided by NO3 and ( L 1 ), and both of these ions are in the sphenocorona configuration. [Dy2( L 2 )2(NO3)4] ( 2 ) [H L 2 = 2-(pyridin-2-yl)hexahydropyrimidin-5-ol] was obtained using the same reaction material only when the reaction temperature was changed to 60°C. Structural analysis of complex 2 showed that the two Dy (III) ions with the same coordination configuration are in the N3O6 coordination environment provided by NO3 and ( L 2 ) and are in the distorted spherical-capped square antiprism. Surprisingly, H L 2 with the parent of bipyridine was synthesized by the Schiff base reaction of 1,3-diamino-2-propanol with 2-pyridoxaldehyde followed by the ring-closing reaction catalyzed by Dy (III) ions. Magnetic measurements of the Dy (III) complexes revealed no obvious frequency-dependent behavior of complex 1 . In contrast, complex 2 showed an obvious frequency dependence (Ueff = 0.49 K and τ0 = 6.62 × 10−4 s) under the condition of zero field and a weak double relaxation behavior (Ueff = 9.25 K and τ0 = 9.70 × 10−4 s) at 1500 Oe.  相似文献   

11.
The interaction of molecules, especially hydrocarbons, at the gas/ionic liquid (IL) surface plays a crucial role in supported IL catalysis. The dynamics of this process is investigated by measuring the trapping probabilities of n-butane, iso-butane and 1-butene on a set of frozen 1-alkyl-3-methylimidazolium-based ILs [CnC1Im]X, where n=4, 8 and X=Cl, Br, [PF6] and [Tf2N]. The decrease of the initial trapping probability with increasing surface temperature is used to determine the desorption energy of the hydrocarbons at the IL surfaces. It increases with increasing alkyl chain length n and decreasing anion size for the ILs studied. We attribute these effects to different degrees of alkyl chain surface enrichment, while interactions between the adsorbate and the anion do not play a significant role. The adsorption energy also depends on the adsorbing molecule: It decreases in the order n-butane>1-butene>iso-butane, which can be explained by different dispersion interactions.  相似文献   

12.
This paper overviews three living cationic polymerization systems (for styrene, p-methoxystyrene, and isobutyl vinyl ether) that are, in common, featured by: (i) specifically in nonpolar solvents, the use of the hydrogen halide/metal halide initiating systems (HX/MXn; X: I, Br, Cl; MXn: ZnX2, SnCl4), which generate a living growing carbocation stabilized by a nucleophilic counteranion (X…MXn); (ii) specifically in polar solvents, the use of externally added ammonium salts (nBu4N+Y; Y: I, Br, Cl), which permit the generation of living species from HX/MXn by providing nucleophilic halogen anions Y, either the same as or different from the halogen X in HX.  相似文献   

13.
Three lanthanide‐based two‐dimensional (2D) coordination polymers (CPs), [Ln(L)(H2O)2]n, {H3L=(HO)2P(O)CH2CO2H; Ln=Dy3+ (CP 1 ), Er3+ (CP 2 )} and [{Gd2(L)2(H2O)3}.H2O]n, (CP 3 ) were hydrothermally synthesized using phosphonoacetic acid as a linker. Structural features revealed that the dinuclear Ln3+ nodes were present in the 2D sheet of CP 1 and CP 2 while in the case of CP 3 , nodes were further connected to each other forming a chain‐type arrangement throughout the network. The magnetic studies show field‐induced slow magnetic relaxation property in CP 1 and CP 2 with Ueff values of 72 K (relaxation time, τ0=3.05×10?7 s) and 38.42 K (relaxation time, τ0=4.60×10?8 s) respectively. Ab‐initio calculations suggest that the g tensor of Kramers doublet of the lanthanide ion (Dy3+ and Er3+) is strongly axial in nature which reflects in the slow magnetic relaxation behavior of both CPs. CP 3 exhibits a significant magnetocaloric effect with ?ΔSm=49.29 J kg?1 K?1, one of the highest value among the reported 2D CPs. Moreover, impedance analysis of all the CPs show high proton conductivity with values of 1.13×10?6 S cm?1, 2.73×10?3 S cm?1 and 2, 6.27×10?6 S cm?1 for CPs 1 – 3 , respectively, at high temperature (>75 °C) and maximum 95 % relative humidity (RH).  相似文献   

14.
In contrast to the UV‐photoinduced ligand photoionization of the flavonoid complexes of FeIII, redox reactions initiated in ligand‐to‐metal charge‐transfer excited states were observed on irradiation of the quercetin ( 1 ) and rutin ( 2 ) complexes of CuII. Solutions of complexes with stoichiometries [CuIIL2] (L=quercetin, rutin) and [CuII2Ln] (n=1, L=quercetin; n=3, L=rutin) were flash‐irradiated at 351 nm. Transient spectra observed in these experiments showed the formation of radical ligands corresponding to the one‐electron oxidation of L and the reduction of CuII to CuI. The radical ligands remained coordinated to the CuI centers, and the substitution reactions replacing them by solvent occurred with lifetimes τ<350 ns. These are lifetimes shorter than the known lifetimes (τ>1 ms) of the quercetin and rutin radical's decay.  相似文献   

15.
A staggered arrangement like that of the hydrogen atoms in ethane is exhibited by the six phenol groups about each pair of silver atoms in the self-assembled three-dimensional coordination networks [Ag2(H2L)3]nX2n (H2L=N,N′-bis(salicylidene)-1,4-diaminobutane; X=NO3 or ClO4); the former is depicted (for clarity the H2L ligands are represented by long rods and the Ag atoms by hatched circles). These solids contain short ligand-unsupported metal–metal bonds and display intense blue photoluminescence at room temperature.  相似文献   

16.
Employing gradient-corrected levels of density-functional theory (DFT), medium-sized basis sets, and optimized geometries, chemical shifts are calculated for [VOClnF3−n] (n=0–3), VF5, [VO(OCH2CH2)3N], [V(CO)6], [V(CO)5(N2)], as well as for the model compounds [VO(OMe)nMe3−n] (n=0–3) and their AlH3 adducts. Experimental trends in δ(51V) are well reproduced with DFT-based methods; for example, the slopes of the δ(51V)calc vs. δ(51V)expt linear regression lines are 0.92 and 1.03 at the GIAO-BP86 and GIAO-B3LYP levels, respectively. Ethylene polymerization observed with [V(O⋅⋅⋅AlX3)(OR)nR′3−n] (X, R, R′=bulky alkyl, aryl, or silyl groups) is shown for model systems (X=H, R=R′=Me) to proceed by insertion of the olefin into a V—C bond via a transition state with approximate square-pyramidal coordination about vanadium. For the tri- and dialkyl derivatives (n=0, 1), similar activation barriers of ca. 19 kcal/mol are computed (BP86 level including zero-point energies), whereas that of the monoalkyl species (n=2) is predicted to be much higher, ca. 30 kcal/mol. The relevance of these results for the apparent relationship between δ(51V) and catalytic activities is discussed. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 113–122, 1998  相似文献   

17.
We report the synthesis and photophysical characterization of novel halogenated dipyrrolonaphthyridine-diones (X2–DPNDs, X = Cl, Br, and I), as candidates for photodynamic therapy (PDT) application. Apart from the heavy atom-induced spin-orbit coupling (SOC) dynamics in the investigated X2–DPNDs, it was found that the position of the halogen atom (relative to the nitrogen of the pyrrole ring) also influenced the triplet excited state behavior. Interestingly, the faster/efficiency sensitization of 3O2 to 1O2 using X2–DPND correlates with the rate of triplet population, kISC >1.6 × 108 s−1 for I2–DPND vs kISC >2.9 × 109 s−1 for Cl2–DPND and Br2–DPND (where τISC = 343 ± 3 ps for I2–DPND and τISC = 5–6 ns for Cl2–DPND and Br2–DPND are the lowest time constants/values for ISC). Furthermore, the heavy atom-induced SOC in Cl2–DPND and Br2–DPND did not lead to a reduction of the corresponding fluorescence (ca 75% vs 67% for the parent DPND). The attractive photophysical characteristics of Cl2/Br2–DPND put them on the landscape as not only promising PDT agents but also as fluorescence probes. The present study is a stepping stone in the development of novel organic photosystems for synergistic photomedicinal applications.  相似文献   

18.
Overshoot of shear stress, σ, and the first normal stress difference, N1, in shear flow were investigated for polystyrene solutions. The magnitudes of shear corresponding to these stresses, γσm and γNm, for entangled as well as nonentangled solutions were universal functions of γ˙τeq, respectively, and γNm was approximately equal to 2γσm at any rate of shear, γ˙. Here τeq = τR for nonentangled systems and τeq = 2τR for entangled systems, where τR is the longest Rouse relaxation time evaluated from the dynamic viscoelasticity at high frequencies. Only concentrated solutions exhibited stress overshoot at low reduced rates of shear, γ˙τeq < 1. The behavior at very low rates, γ˙τeq < 0.2, was consistent with the Doi–Edwards tube model theory for entangled polymers. At high rates, γ˙τeq > 1, γσm and γNm were approximately proportional to γ˙τeq. At very high rates of shear, the peak of σ is located at t = τR, possibly indicating that the polymer chain shrinks with a characteristic time τR in dilute solutions. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1917–1925, 2000  相似文献   

19.
In spite of achievement of a lot of Ln-radical SMMs, how to improve magnetic behavior of Ln-radical system remains challenging. Here, two series of Ln-radical complexes have successfully been built using an imino nitroxide biradical, namely, [Ln2(hfac)6(ImPhPyobis)2] (LnIII=Gd 1 , Tb 2 , Dy 3 ) and [Ln2Cu2(hfac)10(ImPhPyobis)2] (LnIII=Gd 4 , Dy 5 ; hfac=hexafluoroacetylacetonate and ImPhPyobis=5-(4-oxypyridinium-1-yl)-1,3-bis(1’-oxyl-4’,4’,5’,5’-tetramethyl-4,5-hydro-1H-imidazol-2-yl)benzene). For these biradical-metal complexes, two imino nitroxide biradicals bind two Ln(III) ions via their oxygen atoms coming from 4-oxypyridinium units to produce a binuclear {Ln2O2} unit. Those imino nitroxide groups are free for complexes 1 – 3 , however one of imino nitroxide groups of the biradical is ligated to the copper(II) ion for complexes 4 and 5 . The distinct magnetic relaxation behaviors are observed for two Dy derivatives, as revealed by ac magnetic studies: complex 3 presents one magnetic process with the effective energy barrier(Ueff) of 74.0 K while complex 5 exhibits dual relaxation processes with Ueff values for the fast- and slow-relaxation being 20.2 K and 30.9 K, respectively, which implies that the second coordination sphere of Dy ion plays a critical role for magnetic relaxation.  相似文献   

20.
Phototransformations of autofluorescent proteins are applied in high‐resolution microscopy and in studying cellular transport, but they are detrimental when accidentally occurring in blinking or photobleaching (BL). Here, we investigate the kinetics of phototransformations of a photoactivatable green fluorescent protein (GFP) in confocal microscopy. Photoconversion (PC) is achieved by excitation of the barely present anionic chromophore state Req? in the GFP mutant Thr203Val. Besides the shift of the equilibrium between the neutral chromophore state RH and Req?, the photoconverted anionic chromophore RPC? exhibits a reduced fluorescence lifetime τfl=2.2 ns. In fluorescence lifetime imaging microscopy, τfl is found to depend, however, on the excitation conditions and history. The underlying photochemistry is described by the kinetic scheme of consecutive reactions, Req?→RPC?→Pdark, in which the anionic chromophore species and the dark protein Pdark are coupled by PC and BL. Time‐correlated single‐photon‐counting detection in a confocal geometry of freely diffusing species is used to compute the quantum yields for PC and BL, ΦPC and ΦBL. The assessed values are ΦPC=5.5×10?4 and ΦBL>1×10?5. Based on these values, PC provokes misinterpretation in fluorescence resonance energy transfer experiments and is responsible for spectroscopic peculiarities in single‐molecule detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号