首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用微乳液法制备NaLu(WO4)2-x(MoO4)x:8%Eu3+(x=0, 0.5, 1.0, 1.5, 2.0)/y%Eu3+,5%Tb3+(y=1, 3, 5, 7, 9)系列荧光粉.通过X射线衍射(XRD)表征,所制样品的X射线衍射峰与标准卡片PDF#27-0729基本吻合,表明所制的样品为白钨矿结构,属于四方晶系.扫描电镜SEM显示制备的纳米粒子是梭子状的,粒径大约是110 nm.激发发射光谱显示,在Eu3+离子掺杂浓度为8%时,NaLu(WO4)(MoO4):Eu3+发光强度最大.NaLu(WO4)2-x(MoO)x :8%Eu3+(x=0, 0.5, 1.0, 1.5, 2.0)荧光粉在Mo/W比达到1:1(x=1)时发光强度最大,强烈的红光发射表明该材料可用于白光LED材料.该荧光粉在268、394和466 nm波长光激发下分别发出橙红色、黄色和淡黄色光,可以满足不同光色需要.NaLu(WO)(MoO):y%Eu3+,5%Tb3+(y=1, 3, 5, 7, 9)荧光粉,随着y值增大,从绿光区(x=0.278, y=0.514)进入白光区(x=0.356, y=0.373), (x=0.278, y=0.313),同时观察到Tb3+到Eu3+有效能量传递.  相似文献   

2.
采用微乳液法制备Na Lu(WO4)2-x(Mo O4)x∶8%Eu3+(x=0,0.5,1.0,1.5,2.0)/y%Eu3+,5%Tb3+(y=1,3,5,7,9)系列荧光粉。通过X射线衍射(XRD)表征,所制样品的X射线衍射峰与标准卡片PDF#27-0729基本吻合,表明所制的样品为白钨矿结构,属于四方晶系。扫描电镜(SEM)显示制备的纳米粒子是梭子状的,粒径大约是110 nm。激发发射光谱显示,在Eu3+离子掺杂物质的量分数为8%时,Na Lu(WO4)(Mo O4)∶Eu3+发光强度最大。Na Lu(WO4)2-x(Mo O4)x∶8%Eu3+(x=0,0.5,1.0,1.5,2.0)荧光粉在nMo/nW比达到1∶1(x=1)时发光强度最大,强烈的红光发射表明该材料可用于白光LED材料。该荧光粉在268、394和466 nm波长光激发下分别发出橙红色、黄色和淡黄色光,可以满足不同光色需要。Na Lu(WO4)(Mo O4)∶y%Eu3+,5%Tb3+(y=1,3,5,7,9)荧光粉,随着y值增大,从绿光区(x=0.278,y=0.514)进入白光区(x=0.356,y=0.373),(x=0.278,y=0.313),同时观察到Tb3+到Eu3+有效能量传递。  相似文献   

3.
We report a new dicalcium silicate phosphor, Ca2?xEuxSiO4, which emits red light in response to blue‐light excitation. When excited at 450 nm, deep‐red emission at 650 nm was clearly observed in Ca1.2Eu0.8SiO4, the external and internal quantum efficiencies of which were 44 % and 50 %, respectively. The red emission from Ca2?xEuxSiO4 was strongly related to the peculiar coordination environments of Eu2+ in two types of Ca sites. The red‐emitting Ca2SiO4:Eu2+ phosphors are promising materials for next‐generation, white‐light‐emitting diode applications.  相似文献   

4.
A hitherto unknown synthetic access to alkali lithosilicates, a substance class first described by Hoppe in the 1980s, is reported. With the synthesis and characterization of NaK7[Li3SiO4]8, a new representative has been discovered, expanding the family of known alkali lithosilicates. Astonishingly, NaK7[Li3SiO4]8 and the already established alkali lithosilicates Na[Li3SiO4] as well as K[Li3SiO4] display unforeseen luminescence properties, when doped with Eu2+. Na[Li3SiO4]:Eu2+ exhibits an ultra‐narrow blue, K[Li3SiO4]:Eu2+ a broadband, and NaK7[Li3SiO4]8:Eu2+ a yellow‐green double emission upon excitation with near‐UV to blue light. Consequently, all of the investigated substances of this class of compounds are highly interesting phosphors for application in phosphor converted LEDs.  相似文献   

5.
采用微波固相法制备了CaWO4xEu3+,ySm3+,zLi+红色荧光粉。测量样品的XRD图、激发谱、发射谱及发光衰减曲线,研究并分析了Eu3+、Sm3+、Li+的掺杂浓度,对样品微结构、光致发光特性、能量传递及能级寿命的影响。结果表明,Eu3+、Sm3+、Li+掺杂并未引起合成粉体改变晶相,仍为CaWO4单一四方晶系结构。Eu3+、Sm3+共掺样品中,Sm3+掺杂为3%时,Sm3+对Eu3+的能量传递最有效。Li+掺杂起到了助熔剂和敏化剂的作用,使样品发光更强。在394 nm激发下,与CaWO4:3%Eu3+样品比较,3%Eu3+、3%Sm3+共掺CaWO4及3%Eu3+、3%Sm3+、1%Li+共掺CaWO4样品的发光分别增强2倍及2.4倍。同一激发波长下,单掺Eu3+样品寿命最短,Sm3+、Eu3+共掺样品随Sm3+浓度增加,寿命先减小后增加,且掺杂了Li+的样品比不掺Li+的样品5D0能级寿命有所增加。  相似文献   

6.
通过高温固相反应合成了新型的蓝色荧光粉Sr7Zr(PO4)6xEu2+。通过X射线粉末衍射(XRD)、紫外可见(UV-Vis)吸收光谱、荧光光谱研究了Sr7Zr(PO4)6xEu2+材料的相纯度及荧光性质。结果表明,Eu2+掺杂获得的Sr7Zr(PO4)6xEu2+荧光粉为纯相,且200~400 nm范围内的近紫外(NUV)光均能对其进行有效的激发。在315 nm的激发下,Sr7Zr(PO4)6xEu2+荧光粉发射出峰值位于415 nm左右的蓝光,且Eu2+在Sr7Zr (PO4)6基质中的最佳掺杂浓度为0.05,相应的CIE色度坐标为(0.164,0.021),比商用BaMgAl10O17∶Eu2+(BAM)蓝色荧光粉具有更高的色纯度。  相似文献   

7.
采用高温固相法在空气中合成了Ba1.97-yZn1-xMgxSi2O7:0.03Eu,yCe3+系列荧光粉。分别采用X-射线衍射和荧光光谱对所合成荧光粉的物相和发光性质进行了表征。在紫外光330~360 nm激发下,固溶体荧光粉Ba1.97-yZn1-xMgxSi2O7:0.03Eu的发射光谱在350~725 nm范围内呈现多谱峰发射,360和500 nm处有强的宽带发射属于Eu2+离子的4f65d1-4f7跃迁,590~725 nm红光区窄带谱源于Eu3+5D0-7FJ (J=1,2,3,4)跃迁,这表明,在空气气氛中,部分Eu3+在Ba1.97-yZn1-xMgxSi2O7基质中被还原成了Eu2+;当x=0.1时,荧光粉Ba1.97Zn0.9Mg0.1Si2O7:0.03Eu的绿色发光最强,表明Eu3+被还原成Eu2+离子的程度最大。当共掺入Ce3+离子后,形成Ba1.97-yZn0.9Mg0.1Si2O7:0.03Eu,yCe3+荧光粉体系,其发光随着Ce3+离子浓度的增大由蓝绿区经白光区到达橙红区;发现名义组成为Ba1.96Zn0.9Mg0.1Si2O7:0.01Ce3+,0.03Eu的荧光粉的色坐标为(0.323,0.311),接近理想白光,是一种有潜在应用价值的白光荧光粉。讨论了稀土离子在Ba2Zn0.9Mg0.1Si2O7基质中的能量传递与发光机理。  相似文献   

8.
Learning from natural mineral structures is an efficient way to develop potential host lattices for applications in phosphor converted (pc)LEDs. A narrow‐band blue‐emitting silicate phosphor, RbNa3(Li3SiO4)4:Eu2+ (RNLSO:Eu2+), was derived from the UCr4C4‐type mineral model. The broad excitation spectrum (320–440 nm) indicates this phosphor can be well matched with the near ultraviolet (n‐UV) LED chip. Owing to the UCr4C4‐type highly condensed and rigid framework, RNLSO:Eu2+ exhibits an extremely small Stokes shift and an unprecedented ultra‐narrow (full‐width at half‐maximum, FWHM=22.4 nm) blue emission band (λem=471 nm) as well as excellent thermal stability (96 %@150 °C of the initial integrated intensity at 25 °C). The color gamut of the as‐fabricated (pc)LEDs is 75 % NTSC for the application in liquid crystal displays from the prototype design of an n‐UV LED chip and the narrow‐band RNLSO:Eu2+ (blue), β‐SiAlON:Eu2+ (green), and K2SiF6:Mn4+ (red) components as RGB emitters.  相似文献   

9.
Motivated by the need for new phosphors of white light emitting diode (WLED) application, Ca0.95Nb2 O6:Eu3+0.05 phosphors were synthesized by high temperature solid‐state reaction. Increasing the content of doped‐Eu3+ and adding the co‐activator Bi3+ to improve the photoluminescence (PL) intensity of Ca1?xNb2 O6Eu3+x phosphors were investigated in detail. The effects of Eu3+ were better than that of Bi3+ on the PL intensity of Ca1?xNb2 O6Eu3+x phosphors. Compared with Y2O2 S:0.05Eu3+ the Ca0.70Nb2 O6:Eu3+0.03 phosphor could be excited efficiently by UV (395 nm) light and emit the red light at 614 nm with line spectra, which were coupled well with the characteristic emission from UV‐Near UV LED. The CIE (International Commission on Illumination) chromaticity coordinates (x?0.654, y?0.348) of Ca0.70Nb2O6:Eu3+0.03 were close to the NTSC (National Television Standard Committee) standard values. Therefore Ca0.70Nb2 O6:Eu3+0.03 might find application to UV‐Near UV InGaN chip‐based white light emitting diodes, which is further proved by the LED fabrication with the Ca0.70Nb2 O6:Eu3+0.03 phosphor.  相似文献   

10.
In this study, lithium yttrium borate (LYBO) phosphor was doped with various concentrations of trivalent dysprosium ions. To produce these phosphors, the raw materials were sintered. The phase conformation, crystallinity, grain size, and overall morphology of the synthesized phosphors were studied with X-ray diffraction and scanning electron microscopy. The optimized LYBO phosphor, i.e., the LYBO phosphor that exhibited the highest X-ray- and ultraviolet (UV)-induced photoluminescent intensities, had a Dy3+ concentration of 4 mol%. Photoluminescence analysis showed that this phosphor could be easily excited with near-UV light (300–400 nm). The dominant photoluminescence bands were found in the blue (480 nm) and yellow (577 nm) regions of the visible spectrum. The light yield of the X-ray-induced luminescence of the optimized Li6Y(BO3)3:Dy3+ was found to be 66% of that of the commercially available X-ray imaging material, Gd2O2S:Tb3+ (GOS). The chromaticity coordinates of the Li6Y(BO3)3:Dy3+ phosphor were x = 0.34 and y = 0.32, which agree well with achromatic white (x = 0.33, y = 0.33). The results of this study show that the synthesized Li6Y(BO3)3:Dy3+ phosphor could be used as X-ray imaging material.  相似文献   

11.
采用高温固相法在空气中合成了Ba1.97-yZn1-xMgxSi2O7∶0.03Eu,y Ce3+系列荧光粉。分别采用X-射线衍射和荧光光谱对所合成荧光粉的物相和发光性质进行了表征。在紫外光330~360 nm激发下,固溶体荧光粉Ba1.97-yZn1-xMgxSi2O7∶0.03Eu的发射光谱在350~725 nm范围内呈现多谱峰发射,360和500 nm处有强的宽带发射属于Eu2+离子的4f 65d1-4f 7跃迁,590~725 nm红光区窄带谱源于Eu3+的5D0-7FJ(J=1,2,3,4)跃迁,这表明,在空气气氛中,部分Eu3+在Ba1.97-yZn1-xMgxSi2O7基质中被还原成了Eu2+;当x=0.1时,荧光粉Ba1.97Zn0.9Mg0.1Si2O7∶0.03Eu的绿色发光最强,表明Eu3+被还原成Eu2+离子的程度最大。当共掺入Ce3+离子后,形成Ba1.97-yZn0.9Mg0.1Si2O7∶0.03Eu,y Ce3+荧光粉体系,其发光随着Ce3+离子浓度的增大由蓝绿区经白光区到达橙红区;发现名义组成为Ba1.96Zn0.9Mg0.1Si2O7∶0.03Eu,0.01Ce3+的荧光粉的色坐标为(0.323,0.311),接近理想白光,是一种有潜在应用价值的白光荧光粉。讨论了稀土离子在Ba2Zn0.9Mg0.1Si2O7基质中的能量传递与发光机理。  相似文献   

12.
Starting from the aqueous solutions of metal nitrates with citric acid and polyethylene glycol (PEG) as additives, BaMgAl10O17:Eu2+ (BAM:Eu2+) phosphors were prepared by a two-step spray pyrolysis (SP) method. X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence spectra were used to characterize the resulted BAM:Eu2+ phosphors. The obtained BAM:Eu2+ phosphor particles have spherical shape, submicron size (0.5-3 μm). The effects of process conditions of the spray pyrolysis, such as molecular weight and concentration of PEG, on the morphology and luminescence properties of phosphor particles were investigated. Adequate amount of PEG was necessary for obtaining spherical particles, and the optimum emission intensity could be obtained when the concentration of PEG was 0.03 g/ml in the precursor solution. Moreover, the emission intensity of the phosphors increased with increasing of metal ion concentration in the solution. Compared with the BAM:Eu2+ phosphor prepared by citrate-gel method, spherical BAM:Eu2+ phosphor particles showed a higher emission intensity.  相似文献   

13.
王林香 《无机化学学报》2017,33(10):1741-1747
采用微波固相法制备了CaWO_4∶xEu~(3+),ySm~(3+),zLi~+红色荧光粉。测量样品的XRD图、激发谱、发射谱及发光衰减曲线,研究并分析了Eu~(3+)、Sm~(3+)、Li~+的掺杂浓度,对样品微结构、光致发光特性、能量传递及能级寿命的影响。结果表明,Eu~(3+)、Sm~(3+)、Li~+掺杂并未引起合成粉体改变晶相,仍为CaWO_4单一四方晶系结构。Eu~(3+)、Sm~(3+)共掺样品中,Sm~(3+)掺杂为3%时,Sm~(3+)对Eu~(3+)的能量传递最有效。Li~+掺杂起到了助熔剂和敏化剂的作用,使样品发光更强。在394 nm激发下,与CaWO_4∶3%Eu~(3+)样品比较,3%Eu~(3+)、3%Sm~(3+)共掺CaWO_4及3%Eu~(3+)、3%Sm~(3+)、1%Li~+共掺CaWO_4样品的发光分别增强2倍及2.4倍。同一激发波长下,单掺Eu~(3+)样品寿命最短,Sm~(3+)、Eu~(3+)共掺样品随Sm~(3+)浓度增加,寿命先减小后增加,且掺杂了Li~+的样品比不掺Li~+的样品~5D_0能级寿命有所增加。  相似文献   

14.
A novel orange‐yellow‐emitting Ba3Gd(PO4)3:x Eu2+,y Mn2+ phosphor is prepared by high‐temperature solid‐state reaction. The crystal structure of Ba3Gd(PO4)3:0.005 Eu2+,0.04 Mn2+ is determined by Rietveld refinement analysis on powder X‐ray diffraction data, which shows that the cations are disordered on a single crystallographic site and the oxygen atoms are distributed over two partially occupied sites. The photoluminescence excitation spectra show that the developed phosphor has an efficient broad absorption band ranging from 230 to 420 nm, perfectly matching the characteristic emission of UV‐light emitting diode (LED) chips. The emission spectra show that the obtained phosphors possess tunable color emissions from yellowish‐green through yellow and ultimately to reddish‐orange by simply adjusting the Mn2+ content (y) in Ba3Gd(PO4)3:0.005 Eu2+,y Mn2+ host. The tunable color emissions origin from the change in intensity between the 4f–5d transitions in the Eu2+ ions and the 4T16A1 transitions of the Mn2+ ions through the energy transfer from the Eu2+ to the Mn2+ ions. In addition, the mechanism of the energy transfer between the Eu2+ and Mn2+ ions are also studied in terms of the Inokuti–Hirayama theoretical model. The present results indicate that this novel orange‐yellow‐emitting phosphor can be used as a potential candidate for the application in white LEDs.  相似文献   

15.
Sunlight‐excitable orange or red persistent oxide phosphors with excellent performance are still in great need. Herein, an intense orange‐red Sr3?xBaxSiO5:Eu2+,Dy3+ persistent luminescence phosphor was successfully developed by a two‐step design strategy. The XRD patterns, photoluminescence excitation and emission spectra, and the thermoluminescence spectra were investigated in detail. By adding non‐equivalent trivalent rare earth co‐dopants to introduce foreign trapping centers, the persistent luminescence performance of Eu2+ in Sr3SiO5 was significantly modified. The yellow persistent emission intensity of Eu2+ was greatly enhanced by a factor of 4.5 in Sr3SiO5:Eu2+,Nd3+ compared with the previously reported Sr3SiO5:Eu2+, Dy3+. Furthermore, Sr ions were replaced with equivalent Ba to give Sr3?xBaxSiO5:Eu2+,Dy3+ phosphor, which shows yellow‐to‐orange‐red tunable persistent emissions from λ=570 to 591 nm as x is increased from 0 to 0.6. Additionally, the persistent emission intensity of Eu2+ is significantly improved by a factor of 2.7 in Sr3?xBaxSiO5:Eu2+,Dy3+ (x=0.2) compared with Sr3SiO5:Eu2+,Dy3+. A possible mechanism for enhanced and tunable persistent luminescence behavior of Eu2+ in Sr3?xBaxSiO5:Eu2+,RE3+ (RE=rare earth) is also proposed and discussed.  相似文献   

16.
Li0.25Sr0.5(MoO4):Eu0.253+ red-emitting phosphors were prepared by the organic gel-thermal decomposition process with metal salts and citric acid as starting reagents. X-ray diffraction, scanning electron microscopy and photoluminescent spectroscopy were used to characterize the as-prepared phosphors. The Li0.25Sr0.5(MoO4):Eu0.253+ phase consisting of nanosized crystallites is formed at 400 °C and the nanosized crystallites with a tetragonal-dipyramid morphology increase with the calcination temperature and time. During the early period at 650 °C, the microstructure of the Li0.25Sr0.5(MoO4):Eu0.253+ crystallites are unstable and the re-crystallization for some particles takes place with a particle morphological modification. The optimized calcination conditions for the Li0.25Sr0.5(MoO4):Eu0.253+ phosphors are 650 °C for 13 h. The Li0.25Sr0.5(MoO4):Eu0.253+ phosphors with particle sizes about 0.5 to 2.0 μm obtained under the optimized conditions can be excited by the ultraviolet light 395 nm and blue light 466 nm, which are well met with the requirements for the current commercial near-UV and blue LEDs, and exhibit a high emission performance.  相似文献   

17.
Searching efficient red phosphors under near‐UV or blue light excitation is practically important to improve the current white light‐emitting diodes (WLEDs). Eu2+‐ and Mn4+‐based red phosphors have been extensively studied. Here we proposed that Eu3+ is also a promising activator when it resides on a noncentrosymmetric coordination site. We proved that Cd4GdO(BO3)3 is a good host, which has a significantly distorted coordination for Eu3+. A careful crystallographic study was performed on the solid solutions of Cd4Gd1‐xEuxO(BO3)3 (0≤x≤1) by Rietveld refinements. The as‐doped Eu3+ cations locate at the Gd3+ site and are well separated by CdO8, CdO6 and BO3 groups; thus, only a slight concentration quenching was observed at ≈80 atom % Eu3+. Most importantly, the parity‐forbidden law of 4f‐4f transitions for Eu3+ are severely depressed, thus the absorptions at ≈393 and ≈465 nm are remarkable. Cd4Gd0.2Eu0.8O(BO3)3 can be pumped by a 395 nm LED chip to give a bright red emission, and when mixed with other commercial blue and green phosphors, it can emit the proper white light (0.3657, 0.3613) with a suitable Ra≈87 and correlated colour temperature ≈4326 K. In‐situ photoluminescence study indicated the low thermal quenching of these borate phosphors, especially under 465 nm excitation. Our case proves the practicability to develop near‐UV excited red phosphors in rare‐earth‐containing borates.  相似文献   

18.
In this work, a latent energy-transfer process in traditional Eu3+,Tb3+-doped phosphors is proposed and a new class of Eu3+,Tb3+-doped Na4CaSi3O9 (NCSO) phosphors is presented which is enabled by luminescence decay dynamics that optimize the electron-transfer energy process. Relative to other Eu3+,Tb3+-doped phosphors, the as-synthesized Eu3+,Tb3+-doped NCSO phosphors show improved large-scale tunable emission color from green to red upon UV excitation, controlled by the Tb3+/Eu3+ doping ratio. Detailed spectroscopic measurements in the vacuum ultraviolet (VUV)/UV/Vis region were used to determine the Eu3+–O2− charge-transfer energy, 4f–5d transition energies, and the energies of 4f excited multiplets of Eu3+ and Tb3+ with different 4fN electronic configurations. The Tb3+→Eu3+ energy-transfer pathway in the co-doped sample was systematically investigated, by employing luminescence decay dynamics analysis to elucidate the relevant energy-transfer mechanism in combination with the appropriate model simulation. To demonstrate their application potential, a prototype white-light-emitting diode (WLED) device was successfully fabricated by using the yellow luminescence NCSO:0.03Tb3+, 0.05Eu3+ phosphor with high thermal stability and a BaMgAl10O17:Eu2+ phosphor in combination with a near-UV chip. These findings open up a new avenue to realize and develop multifunctional high-performance phosphors by manipulating the energy-transfer process for practical applications.  相似文献   

19.
采用EDTA-柠檬酸联合配位法制备一系列组成的(Sr1-xEux)2CaMoO6橙红色荧光粉。通过X射线衍射、拉曼光谱、扫描电镜及荧光光谱研究不同Eu3+离子掺杂浓度下Sr2CaMoO6∶Eu3+荧光粉的晶体结构、掺杂位置、形貌及其光致发光性能。Rietveld全谱拟合结果表明:掺杂后样品为(Ca/Mo)O6八面体少量倾斜的空间群为P21/n的正交双钙钛矿结构,随着Eu3+离子共掺杂浓度的增加,样品的晶胞体积减小;Eu3+离子取代八面体间隙的Sr2+位置致使双钙钛矿的T2g(1)拉曼振动模发生蓝移;在近紫外区宽而强电荷迁移带和蓝光激发下,该荧光粉分别发射以Eu3+离子5D0-7F1磁偶极跃迁为主的橙光和以5D0-7F2电偶极跃迁为主的红光,组成为(Sr0.98Eu0.02)2CaMoO6的荧光粉具有最强的橙红光发射强度,是一种潜在的适用于近紫外LED芯片的光转换红光材料。  相似文献   

20.
Strong orange-red-emitting Ba2LaTaO6:Eu3+ phosphors were designed and applied in various optical applications of luminescence lifetime thermometer, anti-counterfeiting film, and solid-state lighting applications. The crystal structure, elemental composition, asymmetry ratio, and other luminescent behaviors were investigated in detail. Especially, the optimal Ba2LaTaO6:0.1Eu3+ phosphor presented remarkable quantum yield (45.29%) and thermal stability (71.52% at 423 K). Based on the temperature-dependent luminescence decay curves, the maximum relative sensing sensitivity was 0.185 × 10?2 K?1 at 513 K. In addition, a novel anti-counterfeiting technique was introduced. The fabricated polydimethylsiloxane films exhibited three different colors under the irradiations of room light, 254 nm light, and 365 nm light, respectively. Eventually, the packaged light-emitting diode displayed the pure orange-red emission. Briefly, a series of the Eu3+-activated Ba2LaTaO6 phosphors with excellent luminescent properties were characterized and further applied in several optical fields for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号