首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction between divalent metal cations and amino acids plays an important role in many biological processes. In present report, we have examined the effect of metal cations (Be++, Mg++ and Ca++) interaction on structures, binding energies (BE), metal ion affinities (MIA) and infrared (IR) spectra of phenylalanine (Phe) molecule by density functional theory (DFT) calculations at B3LYP/6-311++G(d,p) level. Nine different ground state isomers of Phe molecule have been optimized at B3LYP/6-311++G (d,p) level of theory. The relative ground state energies of these nine isomers are lying between 0.0-1.9 kcal/mol with respect to the ground state energy of most stable Phe isomer. Seven most stable complexes of Phe molecule with Be++, Mg++ and Ca++ [Phe+M]++ (M = Be++, Mg++ and Ca++) were studied. The calculated values of metal ion affinity (MIA), BE and the Gibbs free energies of each [Phe+M] ++ complexes were found to be in the order of Be++ > Mg++ > Ca++. Among the seven [Phe+M]++ complexes, the most stable conformer has charge solvation structure where the metal cations coordinated through tridentate bonds with -N, -O atoms and benzene ring (N/O/Ring). The [Phe+Be]++ complex has maximum MIA value, 353.3 kcal/mol than that of [Phe+Mg]++ and [Phe + Ca]++ complexes. Thus, the complex [Phe+Be]++ is energetically more stable than that of [Phe+Mg]++ and [Phe + Ca]++. The IR spectra of each seven conformers of [Phe+M]++ complexes have been also calculated. The wavnumber position of (-CO) stretching mode was used to determine the charge/salt bridge structures of the [Phe+M]++ complex. The most stable [Phe+M]++ complex has been also verified through the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) analysis.  相似文献   

2.
The interactions of Mg2+ and Ca2+ binding to adenine, cytosine, guanine, and thymine at various binding sites were studied by a high-level quantum chemical method and ABEEMσπ/MM fluctuating charge model. The geometries and binding energies of M2+-bases complexes were determined at CCSD(T)/6-311 ++G(2d,2p)//MP2/6-311 ++G(2d,2p) level of theory, with the basis set superposition error corrections for the binding energy calculations. In comparison with the ab initio results, an accurate classical metal cation–base interaction potential was constructed and parameterized in terms of ABEEMσπ/MM model. It is revealed that Mg2+/Ca2+ prefers to bind with bases at the bidentate position (between two nitrogen atoms or oxygen and nitrogen atoms in purine and pyrimidine), where the binding energy is the largest. Moreover, the distance between M2+ and the base increases from Mg2+ to Ca2+, while the binding energy of Mg2+–base is greater than that of Ca2+-base. The ABEEMσπ/MM potential gives reasonable geometries and binding energies compared with the present quantum chemical calculations, and the overall percentage RMSDs are 1.4 and 1.6% for geometries and binding energies, respectively. Furthermore, the transferability of the parameters of the new potential is validated by investigation of Mg2+/Ca2+ binding to tautomer of bases, and results from our potential also show quite good consistency with those of MP2/6-311 ++G(2d,2p)//B3LYP/6-311 ++G(d,p) method, with the overall percentage RMSDs of 2.2 and 4.7% for geometries and binding energies, respectively. This work will serve as a basis for further investigations of the mechanisms of cation effects on the structure and property of nucleic acids.  相似文献   

3.
Voltage-induced impedance variation of the minicolumn (i.d. 0.53 mm, length 2 mm) packed with cation exchanger was investigated to develop a sensing method. An aqueous sample solution containing the metal cations was continuously supplied to the minicolumn during the impedance measurement with the simultaneous application of both alternating current voltage (amplitude, 1.0 V; frequency, 200 kHz to 6 Hz) and direct current (DC) offset voltage (0.1 to 1.0 V). On a complex plane plot, the profile of the column impedance consisted of a semicircle (200 kHz to 100 Hz) and a straight line (<100 Hz), of which slope varied with the magnitude of the applied DC offset voltage (V DC). The slope–V DC relation depended on the kind of the metal cation and its concentration; in particular, the slope–V DC relations of monovalent cations (Na+ and K+) and divalent ones (Mg2+ and Ca2+) were significantly different. With the change in the concentration of minor divalent salt of MgCl2 or CaCl2 (60 to 140 μM) in the sample solution containing 10 mM NaCl, the slopes showed almost linear relationships between those with application of V DC = 0.1 V and 1.0 V both for magnesium and calcium additions. In the case of plural addition of both MgCl2 and CaCl2 to the solution, the data points in the slope0.1V–slope1.0V plot were located between the two proportional lines for single additions of magnesium and calcium, reflecting both the mixing ratio and net concentrations of the divalent cations. Thus, simulations determination of Mg2+ and Ca2+ can be attained on the basis of the slope0.1V–slope1.0V relation obtained by the impedance measurements of the minicolumn. Actually, the contents of both magnesium and calcium cations in the bottled mineral waters determined simultaneously using the proposed method were almost equivalent to those obtained by the atomic absorption spectrometric measurement.  相似文献   

4.
Orthorhombic magnesium manganese silicate (Mg1.03Mn0.97SiO4) was prepared and evaluated as a new cathode material for rechargeable magnesium batteries. Although the electrochemical activity of the Mg1.03Mn0.97SiO4 synthesized by high-temperature solid-state reaction is low, the magnesium storage capacity of nanosized Mg1.03Mn0.97SiO4 prepared by modified sol–gel route and in situ carbon coating reaches 244 mAh g−1. The capacity increase mechanism during charge/discharge cycling was also preliminary studied.  相似文献   

5.
For mixed magnesium phosphate hydrate complexes containing Mg2+ and Mg+ cations and HPO42−, HPO4, and H2P2O72− anions, theoretical analysis of the electronic structure and energies has been performed at the model level in order to predict the actual role of these systems in various reactions that occur in the catalytic sites of ATP synthesizing enzymes. The calculations (DFT/B3LYP, MP2 with the 6–31G* basis set) of isolated aqua complexes Mg(H2O) n p (n = 1−6, p = 0, +1, +2) show that their relative stability monotonically increases with increasing n in each series and sharply decreases at a given n in going from the charged systems of Mg2+ (4–16 eV) and Mg+ (2–7 eV) to the neutral systems of Mg (<2 eV). An even higher stability is predicted for mixed magnesium complexes. The energies of fragmentation of mixed Mg2+ complexes into singlet phosphate and Mg2+-containing fragments at n = 0–4 are within 6–27 eV, and the energies of fragmentation into the corresponding radical ions are within 3–10 eV; for the Mg+ complexes, the fragmentation energies are also high (6–14 eV). The reasons for the enhanced stability of the complexes of both types have been analyzed with allowance for the predicted specific features of the electron density redistribution upon complex formation. Typical changes in the geometry of the P- and Mg-containing fragments caused by formation of mixed complexes have been discussed in the framework of the vibronic model of heteroligand systems. The high stability of all mixed magnesium complexes relative to various fragmentation products presumably rules out any dissociative processes in them in the course of ATP synthesis with the participation of phosphorylating enzymes.  相似文献   

6.
Human acetyl‐coenzyme A carboxylase 2 catalyzes the carboxylation of acetyl coenzyme A to form malonyl coenzyme A, along with the conversion of magnesium‐adenosine triphosphate complex to magnesium‐adenosine diphosphate complex. A simple off‐column capillary electrophoresis assay for human acetyl‐coenzyme A carboxylase 2 was developed based on the separation of magnesium‐adenosine triphosphate complex, magnesium‐adenosine diphosphate complex, acetyl coenzyme A and malonyl coenzyme A with detection by ultraviolet absorption at 256 nm. When Mg2+ was absent from the separation buffer, the zones due to magnesium‐adenosine triphosphate complex and magnesium‐adenosine diphosphate complex both split and migrated as two separate peaks. With Mg2+ added to the separation buffer, magnesium‐adenosine triphosphate complex and magnesium‐adenosine diphosphate complex produced single peaks, and the reproducibility of peak shape and area improved for human acetyl‐coenzyme A carboxylase 2 assay components. The final separation buffer used was 30.0 mM HEPES, 3.0 mM MgCl2, 2.5 mM KHCO3, and 2.5 mM potassium citrate at pH 7.50. The same buffer was used for the enzyme‐catalyzed reaction (off‐column). Inhibition of human acetyl‐coenzyme A carboxylase 2 by CP‐640186, a known inhibitor, was detected using the capillary electrophoresis assay.  相似文献   

7.
A class of energy storage materials, organosulfur compounds with S–S bonds, has been proposed as novel cathode materials for rechargeable magnesium batteries. The cleavage and recombination of S–S bonds formed during discharge and charge process are the key components for the capacity. The cathode performance of three organosulfur materials, i.e. 2,5-dimercapto-1,3,4-thiadiazole (DMcT), poly-2,2′dithiodianiline (PDTDA) and a conductive sulfur-containing material (CMS) were characterized here. Among them, DMcT compounded with polyaniline (PAn) can provide a relatively flat discharge potential at about 1.4 V vs. Mg/Mg2+. PDTDA exhibits better kinetics and electrical conductivity based on the intramolecular electrocatalytic effect of the aniline moiety on thiolate anions. CMS compounded with PAn produces stable backbones to provide electrically conducting channels and higher disulfide bond content; it exhibits nearly 120 mAh/g initial discharge capacity and good capacity retention. We expect that further improvements to the capacity and cyclability will make organosulfur compounds potential cathode materials for magnesium batteries.  相似文献   

8.
Crenulatin (C25H20O10) is a flavonol derivative and has been isolated from the roots of Rhodiola crenulata (Hook. F. et Thoms.), a widely used medicinal herb. Magnesium and calcium cations play an important physiological role in biological systems. In this work, interactions of magnesium and calcium divalent cations with Crenulatin molecule were studied. Density functional theory (DFT) was used to determine coordination geometries and absolute metal ion affinities (MIA) for all possible stable complexes. The results show that calcium and magnesium cations are able to interact with the Crenulatin molecule through mono-, bi-, and tricoordination. B3LYP/6-31G(d) bond energies for all complexes reveal that magnesium cation has a greater affinity to Crenulatin molecule than calcium cation. The calculated value of Mg2+ cation affinity, including the zero-point vibrational energy (ZPE) and basis set superposition error (BSSE), is 231.8 kcal mol−1 for the most stable complex. Entropy (ΔS) and free energy (ΔG) variations for the metalation processes considered here have also been reported. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Solvation of metal cations has attracted substantial interest on account of its functional importance in biological systems. In the present study, we undertake a comprehensive analysis of hydrated complexes of Mg2+ with up to 20 water molecules using MP2/cc-pVTZ and density functional theory (DFT) calculations. The effect of first, second, and higher solvation shells on magnesium coordination has been systematically analyzed by considering Mg2+(H2O) n complexes. Numerous competing conformations for each of the metal ion complexes have been explored and the minima structures obtained were further analyzed. The study probes the relative preferences among various coordination numbers and unambiguously establishes that coordination number 6 is the most optimal choice. The relative abundance of Mg2+ ion and its coordination with water and other ligands has been analyzed in the Protein Data Bank and Cambridge Structural Database. It is noted that the M–O distance and charge transfer to metal ion increase as the number of solvating water molecules increases. The computational studies are in excellent agreement with the experimental observations, and provide support to multiple coordinate site preferences for Mg2+.  相似文献   

10.
He  Chixian  Yu  Shiwen  Ma  Shuye  Cheng  Feixiang 《Transition Metal Chemistry》2019,44(6):515-524

Three ruthenium(II) polypyridyl complexes with 5-amino-1,10-phenanthroline ligands have been successfully designed and synthesized. They have been fully characterized by ESI-MS, ESI-HRMS, 1H NMR, and elemental analyses. The photophysical and electrochemical properties of the three complexes have been investigated in organic solvent. The geometrical configuration and the electron density distribution in the frontier molecular orbitals of the three complexes have been studied. The three complexes show metal-to-ligand charge transfer (1MLCT) absorption at 445 nm, and intense triplet metal-to-ligand (3MLCT) emission at around 619 nm in fluid solution at 298 K and 580 nm in low-temperature glass. Electrochemical studies of the three complexes are consistent with one RuIII/II reversible couple at around 1.31 V accompanied by three ligand-centered reduction couples.

  相似文献   

11.
《Chemical physics letters》1987,137(3):229-232
The mono- to tetra-hydrates and hexahydrates of Na+, Mg2+ and Al3+ have been taken as examples to investigate to what extend the interactions in water-metal complexes can be replaced by sums of water-water and water-ion two-body interactions. It is found that the quality of the approximation of pairwise additivity of the interaction energies decreases with increasing charge of the ion and also with the number of water molecules in the hydrates. For cations with a charge of more than two the pair approximation can be expected to significantly influence the results of computer simulations of electrolyte solutions.  相似文献   

12.
We report a computational study and analysis of the optical absorption processes of Ag20 and Au20 clusters deposited on the magnesium oxide (100) facet, both regular and including point defects. Ag20 and Au20 are taken as models of metal nanoparticles and their plasmonic response, MgO as a model of a simple oxide support. We consider oxide defects both on the oxygen anion framework (i.e., a neutral oxygen vacancy) and in the magnesium cation framework (i.e., replacing Mg++ with a transition metal: Cu++ or Co++). We relax the clusters’ geometries via Density-Functional Theory (DFT) and calculate the photo-absorption spectra via Time-Dependent DFT (TDDFT) simulations on the relaxed geometries. We find that the substrate/cluster interaction induces a broadening and a red-shift of the excited states of the clusters, phenomena that are enhanced by the presence of an oxygen vacancy and its localized excitations. The presence of a transition-metal dopant does not qualitatively affect the spectral profile. However, when it lies next to an oxygen vacancy for Ag20, it can strongly enhance the component of the cluster excitations perpendicular to the surface, thus favoring charge injection.  相似文献   

13.
Separation of magnesium isotopes was investigated by chemical ion exchange with synthesyzed 1,12-diaza-3,4:9,10-dibenzo-5,8-dioxacyclo pentadecane(NTOE) bonded merrifield peptide resin using elution chromatographic technique. The capacity of novel diazacrown ion exchanger was 0.29 meq/g dry resin. The heavier isotopes of magnesium were concentrated in the solution phase, while the lighter isotopes were enriched in the resin phase. The glass ion exchange column used in our experiment was 32 cm long with inner diameter of 0.2 cm, and 0.5M NH4Cl solution was used as an eluent. The single stage separation factor was determined according to the method of GLUECKAUF from the elution curve and isotopic assays. The separation factors of 24Mg2+25Mg2+, 24Mg2+26Mg2+, and 25Mg2+26Mg2+ were 1.063, 1.080, and 1.021, respectively.  相似文献   

14.
The effects of anti-symmetric electrolytes (CaCl2, Ca(SCN)2, MgCl2, and/or Mg(SCN)2) and pH on the phase behavior, the -potential, the hydrodynamic diameter and the surface charge density of an oil-inwater type (O/W-type) microemulsion formed in solutions of an amphoteric surfactant (N ,N -dimethyl-N -lauroyllysine, DMLL)/n-octane/1-pentanol/brine have been examined. The formation of the microemulsion in the presence of CaCl2 and/or Ca(SCN)2 is of Winsor-type with an increase in the concentration of 1-pentanol. Particularly, microemulsion is not formed by the addition of Ca(SCN)2 in a pH region less than 2.6. The -potential and the surface charge density of the microemulsion in the presence of CaCl2 decrease with an increase in pH and show slightly positive values in the isoelectric region (pH 5-7), while, in the presence of Ca(SCN)2, the -potential and the surface charge density show negative values in the same region at which the net charge of DMLL molecules becomes almost zero. The hydrodynamic diameters in the presence of CaCl2 show a maximum value around pH 2.5, whereas, in the presence of Ca(SCN)2, the minimum value is around pH 5.5. Similar tendencies are recognized in results for the -potential, the hydrodynamic diameter and the surface charge density of the O/W-type microemulsion in the presence of MgCl2 and Mg(SCN)2. A new formula to estimate the binding constants (K) of Ca2+, Mg2+, Cl, and SCN to the hydrophilic groups in DMLL molecules and the adsorption density of DMLL molecules on the oil/water interface (N) in the presence of antisymmetric electrolytes has been derived.K for Ca2+, Mg2+, Cl, and SCN was found to beK Ca=0.12M–1,K Mg=0.14 M–1,K Cl=0.0084±0.0016 M–1, respectively.N for DMLL molecules in the presence of CaCl2, Ca(SCN)2, MgCl2 and/or Mg(SCN)2 was found to be 0.50 nm–2, 0.38 nm–2, 0.44 nm–2, and 0.47 nm–2, respectively; and the surfactant (DMLL) numbers per O/W-type microemulsion droplet change from a few hundreds to a few thousands with changing pH. The larger the hydrodynamic diameter of the O/W-type microemulsion, the greater the number of DMLL molecules adsorbed on the O/W-type microemulsion surfaces.  相似文献   

15.
A poly(3,4-ethylenedioxythiopene) (PEDOT)/polyaniline (PANI) electrochromic device (ECD) was fabricated for the purpose of examining colouration efficiency (CE) as a function of charge density ingress/egress. CE is typically measured in cm2/C with the aim being to produce as large an optical density change as possible with the least amount of charge being consumed. Results indicate that CE is not constant but is highly dependent on charge density insertion and the switching voltage. At a switching voltage of 1.9 V the maximum CEmax was 1186 cm2/C, recorded at 60% of the full optical switch where as the CE95% was 302 cm2/C at 95% of the full optical switch. Furthermore, CEmax varied depending on the switching voltage from a high of 2212 cm2/C at a switching voltage of 1.2 V, 1528 cm2/C at 1.6 V and down to 1186 cm2/C at 1.9 V. The results highlight the fact that the current practice of quoting CE as a single-valued number may not reveal enough detail about the performance of ECDs and polymers.  相似文献   

16.
Fibriform polyaniline/nano-TiO2 composite is prepared by one-step in situ oxidation polymerization of aniline in the presence of nano-TiO2 particles, which contains 80% conducting polyaniline by mass, with a conductivity of 2.45 S/cm at 25 °C. Its maximum specific capacitance is 330 F g?1 at a constant current density of 1.5 A g?1, and can be subjected to charge/discharge over 10,000 cycles in the voltage range of 0.05–0.55 V.  相似文献   

17.
Summary Alteration of biotite flakes which were placed in suspensions of Na+ — and Mg++-montmorillonite for different contact periods at two different temperatures, were followed using X-ray and petrographic microscope.The biotite seemed to alter to a mineral of the vermiculite type. Na+-montmorillonite changed the biotite more than Mg++-montmorillonite at 21°C. At 50°C, however, no changes of the biotite flakes could be observed using Na+-montmorillonite in contrast to the case when Mg++-montmorillonite was used. A good correlation between X-ray measurements and optical observations was found.With 3 figures and 3 tables  相似文献   

18.
张胜红  张鸿鹏  孙吉莹  刘海超 《催化学报》2010,31(11):1374-1380
 以 MgO 修饰的 SBA-15 为载体, 采用浸渍法制备了负载 β-Mg2V2O7 催化剂, 并运用 X 射线衍射、拉曼光谱、紫外-可见漫反射光谱和 H2 程序升温还原等技术对催化剂 V 中心的结构和还原性能进行了表征. 结果表明, β-Mg2V2O7 具有与 α-Mg2V2O7 相同的结构单元, 但其催化丙烷氧化脱氢 (ODH) 反应的初始活性和初始选择性均低于后者. 与体相 β-Mg2V2O7 相比, 负载的 β-Mg2V2O7 上 V 中心分散度以及丙烷 ODH 反应活性和选择性更高, 520 oC 时丙烷 ODH 反应的初始活性提高了约 20 倍, 丙烯初始选择性也从体相的 88.3% 提高到 94.1%, 接近于 α-Mg2V2O7 (94.6%), 并且在 20% 的丙烷转化率时也表现出相似的规律. 这与表征催化剂选择性的两个本征动力学参数 k1/k2 (丙烷初级 ODH 和燃烧反应速率常数之比) 和 k3/k1 (次级丙烯燃烧和初级丙烷 ODH 反应速率常数之比) 反映出的规律一致. 这些对体相和负载的 Mg2V2O7 催化剂催化丙烷 ODH 反应本征特性的认识将有助于设计合成更高效的 Mg-V-O 催化剂, 如基于 α-Mg2V2O7 结构的高分散催化剂, 以获得更高的丙烷 ODH 反应活性和选择性.  相似文献   

19.
The complex formation constants of polyacrylic (PAA) ligands (1.4≤log N≤2.4, N=number of monomer units) with calcium and magnesium ions were determined in different ionic media at different ionic strengths, 0≤I≤1 mol l−1, at t=25 °C. Experimental pH-metric data in the presence of Ca2+ or Mg2+ were firstly analysed in terms of apparent protonation constants, log KH*, using the “three parameter model” proposed by Högfeldt; differences in log KH*, determined in different ionic media, were interpreted in terms of complex species formation. The only species present in the system M-PAA (M=Ca2+ or Mg2+) is ML2: attempts to find species of different stoichiometry were unsuccessful. The stability dependence of this species on ionic strength, on the degree of neutralisation (α) and on PAA molecular weight is discussed using empirical equations. The formation constant, log β2, is significantly higher for Ca2+ than for Mg2+: at I=0.1 mol l−1 (NaCl), log N=1.8 and α=0.5, log β2Ca=4.43 and log β2Mg=4.24. The formation of polyacrylate-alkaline earth metal complexes is discussed in the light of sequestering effects in natural waters.  相似文献   

20.
Two polypyridyl ligands, 5-(4′-ethynylbenzo-15-crown-5)-2,2′-bipyridine (L1) and 3-bromo-8-(4′-ethynylbenzo-15-crown-5)-1,10-phenanthroline (L2), and their Ru(II) complexes [(bpy)2RuL](PF6)2 have been prepared and characterized. Both complexes exhibit metal-to-ligand charge transfer absorption at around 452 nm and emission at around 640 nm in MeCN solution. Electrochemical studies of the complexes reveal a Ru(II)-centered oxidation at around 1.31 V and three ligand-centered reductions. The binding ability of the complexes with Na+ has been investigated by UV/Vis absorption, emission, and electrochemical titrations. Addition of Na+ to MeCN solutions of both complexes results in a progressive enhancement of the emission, a red-shift of the UV/Vis absorption, and a progressive cathodic shift of the Ru(II)-centered E 1/2 couple. The stability constants for the 1:1 stoichiometry adducts of the complexes with Na+ have been obtained from the UV/Vis absorption titrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号