首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 15 毫秒
1.
We report on the investigation of electropreconcentration phenomena in micro-/nanofluidic devices integrating 100 μm long nanochannels using 2D COMSOL simulations based on the coupled Poisson–Nernst–Planck and Navier–Stokes system of equations. Our numerical model is used to demonstrate the influence of key governing parameters such as electrolyte concentration, surface charge density, and applied axial electric field on ion concentration polarization (ICP) dynamics in our system. Under sufficiently extreme surface-charge-governed transport conditions, ICP propagation is shown to enable various transient and stationary stacking and counter-flow gradient focusing mechanisms of anionic analytes. We resolve these spatiotemporal dynamics of analytes and electrolyte ICP over disparate time and length scales, and confirm previous findings that the greatest enhancement is observed when a system is tuned for analyte focusing at the charge, excluding microchannel, nanochannel electrical double layer (EDL) interface. Moreover, we demonstrate that such tuning can readily be achieved by including additional nanochannels oriented parallel to the electric field between two microchannels, effectively increasing the overall perm-selectivity and leading to enhanced focusing at the EDL interfaces. This approach shows promise in providing added control over the extent of ICP in electrokinetic systems, particularly under circumstances in which relatively weak ICP effects are observed using only a single channel.  相似文献   

2.
We report a microfluidic paper based analytical device implementing ion concentration polarization (ICP) for rapid pre-concentration of Escherichia coli in water. The fabricated device consists of a paper channel with a Nafion® membrane and in-built micro wire electrodes to supply electric voltage to induce the ICP effect. E. coli cells were stained with SYTO 9 and fluorescence was used as a sensing method. The device achieved high concentration factor up to 2 × 105 within minutes. The effect of total ion concentration, on ICP and fluorescence intensity was studied. The reported device and method are suitable and effective for detection of E. coli during ballast water quality monitoring, coastal water quality monitoring where high salinity water is present.  相似文献   

3.
4.
In this study a novel polymer composite electrolytes (PCEs) based on poly (vinyl alcohol) (PVA): Ce(III)-complex:NH4SCN plasticized with glycerol are prepared by solution cast technique. XRD and FTIR routes are used to study the film structure. The crystalline and amorphous areas are determined through the deconvolution of XRD spectra and their values were used to calculate the degree of crystallinity. The deconvolutions of the FTIR of asymmetric C≡N stretching mode are carried out to establish the bands coupled with free ions, contact ion pairs and ion aggregates. The maximum ambient temperature DC conductivity of 2.07 × 10−3 S cm−1 is recorded for the sample with the lowest degree of crystallinity. It was found that the number density (n), mobility (μ) and diffusion coefficient (D) of ions are increased with the glycerol concentration. Field emission scanning electron microscopy (FESEM) is used to examine the effect of plasticizer on film morphology. The DC conductivity trend is interpreted in detail with the help of dielectric properties. It is found that the transference numbers of ions (tion) and electrons (tel) are 0.965 and 0.035, respectively. It is shown by the linear sweep voltammetry (LSV) that the potential window of the PCE is 2.1 V. A shape, which is nearly rectangular at lower scan rates, is identified from cyclic voltammetry (CV). Specific capacitance and energy density are exhibited by EDLC with average of 161.5 F/g and 18.17 Wh/kg, respectively within 400 cycles. The initial power density is shown by EDLC to be 2.825 × 103 W/kg.  相似文献   

5.
Na2FePO4F is a promising cathode material for a Na-ion battery because of its high electronic capacity and good cycle performance. In this work, first principle calculations combined with cluster expansion and the Monte Carlo method have been applied to analyze the charge and discharge processes of Na2FePO4F by examining the voltage curve and the phase diagram. As a result of the density functional theory calculation and experimental verification with structural analysis, we found that the most stable structure of Na1.5FePO4F has the P21/b11 space group, which has not been reported to date. The estimated voltage curve has two clear plateaus caused by the two-phase structure composed of P21/b11 Na1.5FePO4F and Pbcn Na2FePO4F or Na1FePO4F and separated along the c-axis direction. The phase diagram shows the stability of the phase-separated structure. Considering that Na2FePO4F has diffusion paths in the a- and c-axis directions, Na2FePO4F has both innerphase and interphase diffusion paths. We suggest that the stable two-phase structure and the diffusion paths to both the innerphase and interphases are a key for the very clear plateau. We challenge to simulate a nonequilibrium state at high rate discharge with high temperature by introducing a coordinate-dependent chemical potential. The simulation shows agreement with the experimental discharge curve on the disappearance of the two plateaus. © 2018 Wiley Periodicals, Inc.  相似文献   

6.
《印度化学会志》2023,100(5):101001
Perovskite solar cells (PSCs) have the potential to be highly efficient, low-cost next-generation solar cells. By raising open circuit voltage (Voc), the interfacial recombination kinetics can further improve device performance. In this study, we used simulation concept to elucidate the influence of using graphene as a surface passivation material in perovskite solar cells. Graphene works well as an interlayer to promote hole extraction and reduce interfacial recombination. In order to evaluate the effect of graphene in PSCs, the simulation was done in the SCAPS-1D framework to compare the performance of a device with and without graphene. Three interface layers were included to the model: TiO2/MAPbI3, MAPbI3/Graphene, and Graphene/Spiro-OMeTAD, in order to account for the impacts of interface defect density on device performance. The impacts of absorber doping concentration, absorber defect density, ETL doping concentration, HTL doping concentration, series resistance, and shunt resistance were also evaluated for the modelled PSC. Without any optimization, the control device with power conversion efficiency (PCE) of 20.677% was outperformed by the graphene-modified device with PCE of 20.911%. This difference is mostly due to the lower recombination losses and more effective suppression of interfacial non-radiative recombination. With optimization, the modified graphene-based device has a PCE of 26.667%. This result shows an enhancement of ∼1.28 times over that of the pristine graphene-based device. The outcomes have opened the way for the development of cost-effective and comparable state-of-the-art, high-efficiency perovskite solar cells with graphene interlayer by eliminating defects and managing non-radiative recombination.  相似文献   

7.
To understand the effect of Au and thiol atoms in octane molecule, a structural and charge density analysis has been carried out by high level ab initio quantum chemical calculations using MP2 and B3PW91 methods with the basis sets 6-311G(d,p) and LANL2DZ. The optimized geometries, specifically, the geometry obtained from both levels reveal the effect of S- and Au-atoms in octane molecule. An introduction of sulfur atom in octane molecule lengthen its backbone C–C bond distances, and further adding of Au-atom at the terminals of octane dithiolate stabilizes these distances. The bond densities of the C–C bonds of octane are 1.6 eÅ−3, these values are decreased significantly and the charges are largely depleted, when thiol and Au-atoms added in the octane molecule. The presence of negative Laplacian 2ρ(r) at bond critical points of C–C and C–H bonds, indicate, the charges are concentrated in these bonds, confirm that these bonds exhibit an open shell type interaction. The moderate values of density and the negative Laplacian of S–C bonds confirm the covalent character. The positive 2ρ(r) value of Au–S bonds, characterize, the bonding interaction is a closed shell interaction. The combined observed low value of electron density and the positive Laplacian of Au–S bond comprises, the gold and S interaction is not a covalent interaction, but it is a very weak coordination bond interaction. The small positive value of total energy density in Au–S bond indicates, the charges in these bonds are highly depleted and this is further confirmed by the Laplacian of bond characterization.  相似文献   

8.
Electrolysis of an aqueous solution of a metal salt with an excess of supporting electrolyte flowing in a two-dimensional channel is considered. The reaction kinetics is modeled by a Butler-Volmer law. The metal electrodes are symmetrically flush mounted in the channel walls, which are otherwise electrically insulating. Using the perturbation scheme originally proposed by Levich for electrolytes with an excess of supporting electrolyte, a solution in closed form, involving the root of a transcendental algebraic equation, is obtained for the polarization curve. For small and large values of the potential difference between the electrodes, explicit expressions for the polarization curve and the distributions of electric current and concentration on the electrodes are obtained. Particular attention is given to the conditions prevailing during the asymptotic approach to the limiting current. Published in Russian in Elektrokhimiya, 2008, Vol. 44, No. 4, pp. 508–517. The text was submitted by the authors in English.  相似文献   

9.
This paper provides analytical chemical information on a range of psycho-active drugs. This analytical chemical information on liquid chromatography-electrospray ionisation-mass spectrometry (HPLC-ESI-MS), ion trap mass spectrometry (ESI-MSn), gas chromatography-flame ionisation detection (GLC-FID) and polarographic behaviour is then incorporated into a database which is of use in drug characterisation. Application is found in the determination of selected drug compounds in hair samples.  相似文献   

10.
The aim of this paper is to provide analytical chemical information on a range of naturally occurring and synthetic coumarins. This analytical chemical information on liquid chromatography-electrospray ionisation-mass spectrometry (HPLC-ESI-MS), ion trap mass spectrometry (ESI-MSn), gas chromatography-flame ionisation detection (GLC-FID) and polarographic behaviour is then incorporated into a database which is of use in identifying unknown coumarins isolated from natural sources. This paper is also concerned with understanding the effect of functional groups in coumarins on their analytical chemical behaviour using the above techniques.  相似文献   

11.
This paper presents a novel approach to dispersive liquid-liquid microextraction (DLLME), based on the use of an auxiliary solvent for the adjustment of density. The procedure utilises a solvent system consisting of a dispersive solvent, an extraction solvent and an auxiliary solvent, which allows for the use of solvents having a density lower than that of water as an extraction solvent while preserving simple phase separation by centrifugation. The suggested approach could be an alternative to procedures described in the literature in recent months and which have been devoted to solving the same problem. The efficiency of the suggested approach is demonstrated through the determination of gold based on the formation of the ion pair [Au(CN)2] anion with Astra Phloxine (R) reagent and its extraction using the DLLME procedure with subsequent UV-VIS spectrophotometric and graphite furnace atomic absorption spectrometric detection. The optimum conditions were found to be: pH 3; 0.8 mmol L−1 K4[Fe(CN)6]; 0.12 mmol L−1 R; dispersive solvent, methanol; extraction solvent, toluene; auxiliary solvent, tetrachloromethane. The calibration plots were linear in the ranges 0.39-4.7 mg L−1 and 0.5-39.4 μg L−1 for UV-VIS and GFAAS detection, respectively; thus enables the application of the developed method in two ranges differing from one from another by three orders of magnitude. The presented approach can be applied to the development of DLLME procedures for the determination of other compounds extractable by organic solvents with a density lower than that of water.  相似文献   

12.
 For a sodium salt of α-sulfonatomyristic acid methyl ester (14SFNa), one of the α-SFMe series surfactants, critical micellization concentration (CMC), solubility and degree of counterion binding (β) were determined by means of electrocon-ductivity measurements at different temperatures (at every 5 °C) ranging from 15 to 50 °C. The phase diagram of 14SFNa in pure water was constructed from the CMC- and solubility-temperature data, in which the Krafft temperature (critical solution temperature) was found around 0 °C. The changes in the Gibbs energy, ΔG 0 m, enthalpy, ΔH 0 m, and entropy, ΔS 0 m, upon micelle formation as a function of temperature were evaluated taking βvalues into calculation. Received: 28 August 1996 Accepted: 5 November 1996  相似文献   

13.
CdII complexes with glycine (gly) and sarcosine (sar) were studied by glass electrode potentiometry, direct current polarography, virtual potentiometry, and molecular modelling. The electrochemically reversible CdII–glycine–OH labile system was best described by a model consisting of M(HL), ML, ML2, ML3, ML(OH) and ML2(OH) (M = CdII, L = gly) with the overall stability constants, as log β, determined to be 10.30 ± 0.05, 4.21 ± 0.03, 7.30 ± 0.05, 9.84 ± 0.04, 8.9 ± 0.1, and 10.75 ± 0.10, respectively. In case of the electrochemically quasi-reversible CdII–sarcosine–OH labile system, only ML, ML2 and ML3 (M = CdII, L = sar) were found and their stability constants, as log β, were determined to be 3.80 ± 0.03, 6.91 ± 0.07, and 8.9 ± 0.4, respectively. Stability constants for the ML complexes, the prime focus of this work, were thus established with an uncertainty smaller than 0.05 log units. The observed departure from electrochemical reversibility for the Cd–sarcosine–OH system was attributed mainly to the decrease in the transfer coefficient . The MM2 force field, supplemented by additional parameters, reproduced the reported crystal structures of diaqua-bis(glycinato-O,N)nickel(II) and fac-tri(glycinato)-nickelate(II) very well. These parameters were used to predict structures of all possible isomers of (i) [Ni(H2O)4(gly)]+ and [Ni(H2O)4(sar)]+; and (ii) [Ni(H2O)3(IDA)] and [Ni(H2O)3(MIDA)] (IDA = iminodiacetic acid, MIDA = N-methyl iminodiacetic acid) by molecular mechanics/simulated annealing methods. The change in strain energy, ΔUstr, that accompanies the substitution of one ligand by another (ML + L′ → ML′ + L), was computed and a strain energy ΔUstr = +0.28 kcal mol−1 for the reaction [Ni(H2O)4(gly)]+ + sar → [Ni(H2O)4(sar)]+ + gly was found. This predicts the monoglycine complex to be marginally more stable. By contrast, for the reaction [Ni(H2O)3IDA] + MIDA → [Ni(H2O)3MIDA] + IDA, ΔUstr = −0.64 kcal mol−1, and the monoMIDA complex is predicted to be more stable. This correlates well with (i) stability constants for Cd–gly and Cd–sar reported here; and (ii) known stability constants of ML complex for glycine, sarcosine, IDA, and MIDA.  相似文献   

14.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号