首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heme and nonheme monoxygenases and dioxygenases catalyze important oxygen atom transfer reactions to substrates in the body. It is now well established that the cytochrome P450 enzymes react through the formation of a high‐valent iron(IV)–oxo heme cation radical. Its precursor in the catalytic cycle, the iron(III)–hydroperoxo complex, was tested for catalytic activity and found to be a sluggish oxidant of hydroxylation, epoxidation and sulfoxidation reactions. In a recent twist of events, evidence has emerged of several nonheme iron(III)–hydroperoxo complexes that appear to react with substrates via oxygen atom transfer processes. Although it was not clear from these studies whether the iron(III)–hydroperoxo reacted directly with substrates or that an initial O?O bond cleavage preceded the reaction. Clearly, the catalytic activity of heme and nonheme iron(III)–hydroperoxo complexes is substantially different, but the origins of this are still poorly understood and warrant a detailed analysis. In this work, an extensive computational analysis of aromatic hydroxylation by biomimetic nonheme and heme iron systems is presented, starting from an iron(III)–hydroperoxo complex with pentadentate ligand system (L52). Direct C?O bond formation by an iron(III)–hydroperoxo complex is investigated, as well as the initial heterolytic and homolytic bond cleavage of the hydroperoxo group. The calculations show that [(L52)FeIII(OOH)]2+ should be able to initiate an aromatic hydroxylation process, although a low‐energy homolytic cleavage pathway is only slightly higher in energy. A detailed valence bond and thermochemical analysis rationalizes the differences in chemical reactivity of heme and nonheme iron(III)–hydroperoxo and show that the main reason for this particular nonheme complex to be reactive comes from the fact that they homolytically split the O?O bond, whereas a heterolytic O?O bond breaking in heme iron(III)–hydroperoxo is found.  相似文献   

2.
    
Aryloxyalkanoate dioxygenases are unique herbicide biodegrading nonheme iron enzymes found in plants and hence, from environmental and agricultural point of view they are important and valuable. However, they often are substrate specific and little is known on the details of the mechanism and the substrate scope. To this end, we created enzyme models and calculate the mechanism for 2,4-dichlorophenoxyacetic acid biodegradation and 2-methyl substituted analogues by density functional theory. The work shows that the substrate binding is tight and positions the aliphatic group close to the metal center to enable a chemoselective reaction mechanism to form the C2-hydroxy products, whereas the aromatic hydroxylation barriers are well higher in energy. Subsequently, we investigated the metabolism of R- and S-methyl substituted inhibitors and show that these do not react as efficiently as 2,4-dichlorophenoxyacetic acid substrate due to stereochemical clashes in the active site and particularly for the R-isomer give high rebound barriers.  相似文献   

3.
4.
5.
6.
    
The design of biomimetic model complexes for the cysteine dioxygenase (CDO) and cysteamine dioxygenase (ADO) is reported, where the 3-His coordination of the iron ion is simulated by three pyrazole donors of a trispyrazolyl borate ligand (Tp) and protected cysteine and cysteamine represent substrate ligands. It is found that the replacement of phenyl groups—attached at the 3-positions of the pyrazole units in a previous model—by mesityl residues has massive consequences, as the latter arrange to a more spacious reaction pocket. Thus, the reaction with O2 proceeds much faster and afterwards the first structural characterization of an iron(II) η2-O,O-sulfinate product became possible. If one of the three Tp-mesityl groups is placed in the 5-position, an even larger reaction pocket results, which leads to yet faster rates and accumulation of a reaction intermediate at low temperatures, as shown by UV/Vis and Mössbauer spectroscopy. After comparison with the results of investigations on the cobalt analogues this intermediate is tentatively assigned to an iron(III) superoxide species.  相似文献   

7.
Decarboxylation of fatty acids is an important reaction in cell metabolism, but also has potential in biotechnology for the biosynthesis of hydrocarbons as biofuels. The recently discovered nonheme iron decarboxylase UndA is involved in the biosynthesis of 1-undecene from dodecanoic acid and using X-ray crystallography was assigned to be a mononuclear iron species. However, the work was contradicted by spectroscopic studies that suggested UndA to be more likely a dinuclear iron system. To resolve this controversy we decided to pursue a computational study on the reaction mechanism of fatty acid decarboxylation by UndA using iron(III)-superoxo and diiron(IV)-dioxo models. We tested several models with different protonation states of active site residues. Overall, however, the calculations imply that mononuclear iron(III)-superoxo is a sluggish oxidant of hydrogen atom abstraction reactions in UndA and will not be able to activate fatty acid residues by decarboxylation at room temperature. By contrast, a diiron-dioxo complex reacts with much lower hydrogen atom abstraction barriers and hence is a more likely oxidant in UndA.  相似文献   

8.
    
Nonheme iron dioxygenases catalyze vital reactions for biosystems including the biosynthesis of antibiotics. One such enzyme, namely the hygromycin biosynthesis enzyme (HygX), performs an oxidative ring-closure reaction to form an ortho−ester product, which is a relevant reaction step for drug synthesis and biotechnology. To understand the selective reaction mechanism of oxidative ring-closure to form ortho−ester products in HygX, we investigated its catalytic reaction mechanism leading to various products. Large active site cluster models were set-up and various pathways for substrate activation have been calculated. The work identifies a high-valent iron(IV)-oxo species in the quintet spin state as the active oxidant that selectively abstracts a proton of an alcohol group of the substrate, which is followed by a hydrogen atom abstraction from a tertiary C−H group and rapid electron transfer. The latter-formed biradical intermediate rearranges to form the desaturated ring-closed product. The calculations show that an active site Lys residue donates positive charge to the metal−oxo group and guides the reaction to a chemoselective desaturation pathway.  相似文献   

9.
    
High‐spin iron(III) iodosylarene complexes bearing an N‐methylated cyclam ligand are synthesized and characterized using various spectroscopic methods. The nonheme high‐spin iron(III) iodosylarene intermediates are highly reactive oxidants capable of activating strong C? H bonds of alkanes; the reactivity of the iron(III) iodosylarene intermediates is much greater than that of the corresponding iron(IV) oxo complex. The electrophilic character of the iron(III) iodosylarene complexes is demonstrated in sulfoxidation reactions.  相似文献   

10.
A microsomal enzyme preparation of chicory roots catalyses the hydroxylation of various sesquiterpene olefins in the presence of NADPH. Most of these hydroxylations take place at an isopropenyl or isopropylidene group. The number of products obtained from any of the substrates is confined to one or, in a few cases, two sesquiterpene alcohols. In addition, the conversion of (+)-valencene into nootkatone through β-nootkatol was observed. The involvement of (+)-germacrene A hydroxylase (a cytochrome P450 enzyme) and other enzymes of sesquiterpene lactone biosynthesis in these reactions is discussed.  相似文献   

11.
12.
13.
    
A new type of high-pressure reactor based on liquid-flow pressurisation using a HPLC pump has been developed. This high-pressure reactor allows the easy and safe performance of reactions with gaseous alkanes under high-pressures up to 10 MPa (100 atm), without the need for high-pressure gas cylinders. The amount of substrate gas required for a single reaction is very small compared with reactions using a conventional autoclave, which, when using expensive substrate gasses, such as 13C-labelled ethane, becomes critical. Employing this high-pressure reactor in conjunction with cytochrome P450BM3 and the assistance of decoy molecules, the direct hydroxylation of gaseous alkanes was drastically improved. At 5 MPa the TOF of propane hydroxylation increased 10-fold, reaching 2200 min−1. Hydroxylation of ethane was also substantially accelerated at 5 MPa, reaching a TOF of 28 min−1.  相似文献   

14.
细胞色素p450的结构与催化机理   总被引:1,自引:0,他引:1  
王斌  李德远 《有机化学》2009,29(4):658-662
细胞色素P450酶是广泛存在的含亚铁血红素单加氧酶, 参与甾类激素的合成、脂溶性维生素代谢、多不饱和脂肪酸转换为生物活性分子, 以及致癌作用和药物代谢. 综述了细胞色素p450结构与功能的关系, 特别是细胞色素P450活性位点经历大幅度开/关运动结合底物和释放产物以及电子迁移途径.  相似文献   

15.
    
One‐electron reduction of mononuclear nonheme iron(III) hydroperoxo (FeIII? OOH) and iron(III) alkylperoxo (FeIII? OOR) complexes by ferrocene (Fc) derivatives resulted in the formation of the corresponding iron(IV) oxo complexes. The conversion rates were dependent on the concentration and oxidation potentials of the electron donors, thus indicating that the reduction of the iron(III) (hydro/alkyl)peroxo complexes to their one‐electron reduced iron(II) (hydro/alkyl)peroxo species is the rate‐determining step, followed by the heterolytic O? O bond cleavage of the putative iron(II) (hydro/alkyl)peroxo species to give the iron(IV) oxo complexes. Product analysis supported the heterolytic O? O bond‐cleavage mechanism. The present results provide the first example showing the one‐electron reduction of iron(III) (hydro/alkyl)peroxo complexes and the heterolytic O? O bond cleavage of iron(II) (hydro/alkyl)peroxo species to form iron(IV) oxo intermediates which occur in nonheme iron enzymatic and Fenton reactions.  相似文献   

16.
碳氢键选择氧化是合成化学领域的重要课题,其中烷烃选择性羟化反应更是面临着化学选择性、区域选择性和立体选择性等多重挑战.细胞色素P450酶广泛分布于动植物和微生物体内,是公认的多功能生物氧化催化剂. P450酶对惰性C—H键的选择性氧化具有独特优势,在催化烷烃选择性羟化反应方面拥有巨大潜力.本综述简述了P450单加氧酶及其催化烷烃选择性羟化的反应机理,梳理了来自CYP153家族、CYP52家族和其他家族的天然P450酶催化各类烷烃底物的氧化反应和选择性,讨论了理性设计和定向进化策略在开发烷烃羟化P450突变酶过程中的经典案例,介绍了底物工程、诱饵分子、双功能小分子协同催化等几种化学活化P450酶的策略及其在烷烃羟化上的应用,探讨了P450酶在烷烃选择性羟化方面所面临的挑战和解决途径,并展望了其应用前景.  相似文献   

17.
    
Cytochrome P450 monooxygenases (P450s) are ubiquitous hemeproteins that insert oxygen specifically into substrates leading to diverse chemical transformations. Utilizing their capabilities, microbial whole-cell biocatalysts are applied in pharmaceutical and fine chemical industry to produce biomolecules and drug metabolites. In order to synthesize novel bioactive compounds there is a great demand to identify P450s with new reaction and substrate scope. In this study, genome mining and an activity screening were successfully combined to discover so far underutilized biocatalysts. The screening revealed the expected broad range of reactions, such as hydroxylations, dealkylations, reductions and desaturations. For Actinosynnema mirum and ritonavir the biotransformation was transferred to a preparative scale resulting in a ritonavir conversion of 90 % after 48 h and 13 different metabolites analyzed by LC-MS2 and NMR. These results clearly demonstrate the potential of the underlying approach to identify promising whole cell biocatalysts with good conversion and product scopes.  相似文献   

18.
19.
The nonheme iron enzyme OrfP reacts with l -Arg selectively to form the 3R,4R-dihydroxyarginine product, which in mammals can inhibit the nitric oxide synthase enzymes involved in blood pressure control. To understand the mechanisms of dioxygen activation of l -Arg by OrfP and how it enables two sequential oxidation cycles on the same substrate, we performed a density functional theory study on a large active site cluster model. We show that substrate binding and positioning in the active site guides a highly selective reaction through C3−H hydrogen atom abstraction. This happens despite the fact that the C3−H and C4−H bond strengths of l -Arg are very similar. Electronic differences in the two hydrogen atom abstraction pathways drive the reaction with an initial C3−H activation to a low-energy 5σ-pathway, while substrate positioning destabilizes the C4−H abstraction and sends it over the higher-lying 5π-pathway. We show that substrate and monohydroxylated products are strongly bound in the substrate binding pocket and hence product release is difficult and consequently its lifetime will be long enough to trigger a second oxygenation cycle.  相似文献   

20.
Cytochrome P450 (CYP) 7B1 is a steroid cytochrome P450 7α‐hydroxylase that has been linked directly with bile salt synthesis and hereditary spastic paraplegia type 5 (SPG5). The enzyme provides the primary metabolic route for neurosteroids dehydroepiandrosterone (DHEA), cholesterol derivatives 25‐hydroxycholesterol (25‐HOChol), and other steroids such as 5α‐androstane‐3β,17β‐diol (anediol), and 5α‐androstene‐3β,17β‐diol (enediol). A series of investigations including homology modeling, molecular dynamics (MD), and automatic docking, combined with the results of previous experimental site‐directed mutagenesis studies and access channels analysis, have identified the structural features relevant to the substrate selectivity of CYP7B1. The results clearly identify the dominant access channels and critical residues responsible for ligand binding. Both binding free energy analysis and total interaction energy analysis are consistent with the experimental conclusion that 25‐HOChol is the best substrate. According to 20 ns MD simulations, the Phe cluster residues that lie above the active site, particularly Phe489, are proposed to merge the active site with the adjacent channel to the surface and accommodate substrate binding in a reasonable orientation. The investigation of CYP7B1–substrate binding modes provides detailed insights into the poorly understood structural features of human CYP7B1 at the atomic level, and will be valuable information for drug development and protein engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号